Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hân
Xem chi tiết
Trần Tuấn Hoàng
20 tháng 4 2023 lúc 15:36

\(M=x^2+y^2-xy-x+y+1\)

\(4M=4x^2+4y^2-4xy-4x+4y+4\)

\(=\left(4x^2+y^2+1-4xy-4x+2y\right)+\left(3y^2+2y+3\right)\)

\(=\left(2x-y-1\right)^2+3\left(y^2+\dfrac{2}{3}y+\dfrac{1}{9}\right)+\dfrac{8}{3}\)

\(=\left(2x-y-1\right)^2+3\left(y+\dfrac{1}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)

\(\Rightarrow M\ge\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}2x-y-1=0\\y+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(MinM=\dfrac{2}{3}\)

 

Phan Hải Nam
Xem chi tiết
Phan Hải Nam
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Phan Hải Nam
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs

9A Lớp
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 14:24

Bổ sung điều kiện: \(x,y>0\)

\(A=\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x^2+y^2}{9xy}+\dfrac{xy}{x^2+y^2}\right)\)

Áp dụng BĐT cosi:

\(A\ge\dfrac{8}{9}\cdot2\sqrt{\dfrac{xy}{xy}}+2\sqrt{\dfrac{xy\left(x^2+y^2\right)}{9xy\left(x^2+y^2\right)}}=\dfrac{16}{9}+\dfrac{2}{3}=\dfrac{22}{9}\)

Vậy \(A_{min}=\dfrac{22}{9}\Leftrightarrow x=y\)

Bờ lều bờ lếu
Xem chi tiết
Incursion_03
1 tháng 4 2019 lúc 22:40

*Max

Có: \(x^2+4\ge4x\)

        \(y^2+4\ge4y\)

      \(z^2+4\ge4z\)

\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)

Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)


Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)

                                                                                                     \(=\frac{5.12+12}{4}=18\)

"=" KHI x = y= z = 2

*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                                                      \(=\left(x+y+z\right)^2\ge0\)

\(\Rightarrow xy+yz+zx\ge-6\)

Dấu "=" xảy ra <=> x + y + z = 0

Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)

Dấu "=" <=> x + y + z = 0 và x+ y2 + z2 = 12

Bờ lều bờ lếu
2 tháng 4 2019 lúc 23:35

bạn ơi mình giải thế này thì sao nhỉ:

đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)

\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)

dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)

bạn xem thử hộ mik cái =)

Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
17 tháng 10 2023 lúc 17:58

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)

\(\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{4.\dfrac{\left(x+y\right)^2}{4}}\)

\(\ge\dfrac{4}{1^2}+2+\dfrac{5}{1^2}\) (do \(x+y\le1\))

\(=11\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy GTNN của A là 11.

trinh
Xem chi tiết
Trần Thị Loan
28 tháng 4 2015 lúc 22:42

2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16)  + 3997

= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997

Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z

Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N

<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024 

=> M \(\ge\)2012

vậy Min M  = 2012

khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3

 

Phạm Ngọc Thảo Ly
Xem chi tiết
phamthibaongoc
10 tháng 5 2016 lúc 20:15

khó quá!!!!!!!!!!!

Nguyễn Việt Hoàn
Xem chi tiết
Nguyễn Ý Nhi
4 tháng 5 2020 lúc 7:19

Đáp án:

 x=-2 

y=1

#Châu's ngốc

Khách vãng lai đã xóa
Hiền Nguyễn
Xem chi tiết
bepro_vn
3 tháng 9 2021 lúc 14:15

Từ gt ta có x^2+y^^2=xy+1

=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2

=(xy+1)2-2x2y2-x2y2

=x2y2+xy+1-3x2y2=-2x2y2+xy+1

=......

Nguyễn Việt Lâm
6 tháng 9 2021 lúc 17:38

\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)

\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)

\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)

Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)

\(P=f\left(t\right)=-2t^2+2t+1\)

\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)