chứng minh rằng:S\(^{5+5^2+5^3+5^4+.......+5^{100}}\)chia hết cho 6
Chứng minh rằng:5+5^2+5^3+5^4+....+5^100 chia hết cho 6
5^0 + 5^1 =6
tìm chữ số tận cùng của 5^100 =0
vì 2 số hạng đầu + lại =6 vậy 0 chia hết cho 2 số hạng đầu . suy ra :6
mk chỉ ghi cách làm theo ý mk hiểu nếu chưa hiểu thì mk chịu
Đặt A = 5+5^2+5^3+5^4+...+5^100
A = (5+5^2)+(5^3+5^4)+...+(5^99+5^100)
A = 5(1+5)+5^3(1+5)+...+5^99(1+5)
A = (5+5^3+...+5^99).(1+5)
A = (5+5^3+...+5^99).6
Vậy biểu thức này chia hết cho 6
Chứng minh rằng:S=16^5+2^15 chia hết cho 33
Chứng minh :
A = 5 + 5^2 + 5^3 + . . . + 5^99 + 5^100 chia hết cho 6
B = 2 + 2^2 + 2^3 + . . . + 2^99 + 2^100 chia hết cho 31
C = 3 + 3^2 + 3^3 + . . . + 3^60 chia hết cho 4, cho 13
A=5+52+...+599+5100
=(5+52)+...+(599+5100)
=5.(1+5)+...+599.(1+5)
=5.6+...+599.6
=6.(5+...+599) chia hết cho 6 (dpcm)
Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi
Chúc bạn học giỏi nha!!
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)
\(B=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{59}.4\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+...+3^{58}.13\)
\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)
chứng minh rằng 5 + 5^2 + 5^3 + 5^4 + 5^99 + 5^100 chia hết cho 6
Ta có : 5 + 52 + 53 + 54 + 599 + 5100 = ( 5+52 ) + ( 53 + 54 ) + (599 + 5100 ) = 5(1+5) + 53 ( 1+5) + 599(1+5 )= 6(5+53+ 599) chia hết cho 6 ( đpcm)
Hãy chứng minh
a,6⁵×5-3⁵ chia hết cho 53
b, 2+2²+2³+2⁴+...+2¹²⁰ chia hết cho 3,7,31,17
c,3⁴ⁿ+¹ +2⁴ⁿ+¹ chia hết cho 5
d, 75+(4²⁰⁰⁶ + 4²⁰⁰⁵+4²⁰⁰⁴+...+1)×25 chia hết cho 100
a) Đặt A = \(6^5.5-3^5\)
\(=\left(2.3\right)^5.5-3^5\)
\(=2^5.3^5.5-3^5\)
\(=3^5.\left(2^5.5-1\right)\)
\(=3^5.\left(32.5-1\right)\)
\(=3^5.159\)
\(=3^5.3.53⋮53\)
Vậy \(A⋮53\)
b) Đặt \(B=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(B⋮3\)
\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7\)
\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)
Vậy \(B⋮7\)
\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{116}.31\)
\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)
Vậy \(B⋮31\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)
\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(=2.255+2^9.255+...+2^{113}.255\)
\(=255.\left(2+2^9+...+2^{113}\right)\)
\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)
Vậy \(B⋮17\)
c) Đặt C = \(3^{4n+1}+2^{4n+1}\)
Ta có:
\(3^{4n+1}=\left(3^4\right)^n.3\)
\(2^{4n}=\left(2^4\right)^n.2\)
\(3^4\equiv1\left(mod10\right)\)
\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)
\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)
\(2^4\equiv6\left(mod10\right)\)
\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)
\(\Rightarrow\) Chữ số tận cùng của C là 5
\(\Rightarrow C⋮5\)
d) Đặt \(D=75+\left(4^{2006}+4^{2005}+4^{2004}+...+1\right).25\)
Đặt \(E=4^{2006}+4^{2005}+4^{2004}+...+1\)
\(\Rightarrow4E=4^{2007}+4^{2006}+4^{2005}+...+4\)
\(\Rightarrow3E=4E-E\)
\(=\left(4^{2007}+4^{2006}+4^{2005}+...+4\right)-\left(4^{2006}+4^{2005}+4^{2004}+...+1\right)\)
\(=4^{2007}-1\)
\(\Rightarrow E=\dfrac{\left(4^{2007}-1\right)}{3}\)
\(\Rightarrow D=75+\dfrac{4^{2007}-1}{3}.25\)
Ta có:
\(4^{2007}=\left(4^2\right)^{1003}.4\)
\(4^2\equiv6\left(mod10\right)\)
\(\left(4^2\right)^{1003}\equiv6^{1003}\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow4^{2007}\equiv\left(4^2\right)^{1003}.4\left(mod10\right)\equiv6.4\left(mod10\right)\equiv4\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(4^{2007}\) là 4
Chứng minh rằng:
a) A = 5 + 5^2 + 5^3 + …+ 5^100 chia hết cho 5 nhưng không chia hết chi 25
b) B = 5 + 5^2 + 5^3 + …+ 5^20 chia hết cho 6
c) C = 5 + 5^2 + 5^3 + …+ 5^2022 + 5^2023 không chia hết cho 6
d) D = 1 + 2 + 2^2 + 2^3 + …+ 2^2021 chia hết cho 7
a) Ta có:
\( A = 5+5^2+5^3+\ldots+5^{100} \)
Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).
Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).
Do đó, A chia hết cho 5.
Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).
Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).
Do đó, A không chia hết cho 25.
b) Ta có:
\( B = 5+5^2+5^3+\ldots+5^{20} \)
Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).
Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).
Do đó, B chia hết cho 6.
c) Ta có:
\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)
Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).
Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).
Do đó, C không chia hết cho 6.
d) Ta có:
\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)
Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).
Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục
mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))
a, A = 5 + 52 + 53 + ... + 5100
A = 5. ( 1 + 5 + ...+ 599)
5 ⋮ 5 ⇒A = 5.(1 + 5 + ...+ 599) ⋮ 5 (1)
A = 5 + 52 + 53 + ... + 5100
A = 5 + 52.( 1 + 5 + 52 + ... + 598)
A = 5 + 25 . ( 1 + 5 + 52 +...+ 598)
Vì 25 ⋮ 25 nên 25.(1 + 5 + 52 +... + 598) ⋮ 25
5 không chia hết cho 25 nên
A = 5 + 25.( 1 + 5 +...+ 598) không chia hết cho 25 (2)
Kết hợp (1) và (2) ta có:
A ⋮ 5 nhưng không chia hết cho 25 (đpcm)
Chứng minh rằng:
a)5+5^2+5^3+...+5^100 chia hết cho 6
b)2+2^2+2^3+...+2^100 chia hết cho 31
c)16^5+2^15 chia hết cho 33
a) \(5+5^2+5^3+....+5^{100}\)
đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )
\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+....+5^{99}.6\)
\(A=6\left(5+5^3+....+5^{99}\right)\)
vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)
b) \(2+2^2+2^3+....+2^{100}\)
đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )
\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )
\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(B=2.31+....+2^{96}.31\)
\(B=31\left(2+...+2^{96}\right)\)
vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)
a) 5+5^2+5^3..+5^100
=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)
=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)
=5.6+5^3.6+.....+5^99.6
=6.(5+5^3+.....+5^99):6
chứng minh A= 5+52+53+54+...+5100 chia hết cho 6
ta có A= 5+52+53+54+...+ 599+5100
A= (5+52) +(53+54)+...+(599+5100)
A = 5(1+5) + 53(1+5) + ...+ 599(1+5)
A = 5.6 + 53.6+...+ 599.6
A = 6(5+ 53+...+ 599)
chia hết cho 6
Cho S=2+2^2+2^3+2^4+2^5+...+2^99.
a)Chứng minh rằng:S chia hết cho 7.
b)Tính gọn S.
c)Tìm chữ số tận cùng của S.