Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TranKhanhHuyenht
Xem chi tiết
TranKhanhHuyenht
Xem chi tiết
Lê Bá Tuấn
Xem chi tiết
Minh Anh
29 tháng 8 2016 lúc 17:35

\(A=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}}\)

\(A=\frac{4024}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+...+\frac{1}{2012.2013:2}}\)

\(A=\frac{4024}{1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2012.2013}}\)

\(A=\frac{4024}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)}\)

\(A=\frac{4024}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)}\)

\(A=\frac{4024}{1+2\left(\frac{1}{2}-\frac{1}{2013}\right)}\)

\(A=\frac{4024}{1+1-\frac{2}{2013}}=\frac{4024}{2-\frac{2}{2013}}=4024:\frac{4024}{2013}=\frac{4024.2013}{4024}=2013\)

Tsumiki Hikari
Xem chi tiết
Con Ma
6 tháng 8 2018 lúc 16:49

So sánh à bạn?

shunnokeshi
6 tháng 8 2018 lúc 16:50

A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)

B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)

vậy A=B

Tẫn
6 tháng 8 2018 lúc 16:51

\(A=\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}.\frac{4.5}{5.5}.....\frac{2012.2013}{2013.2013}=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{2012}{2013}=\frac{1.2.3.4.5....2012}{2.3.4.5....2013}=\frac{1}{2013}\)

\(B=\frac{2012.2013-2012.2012}{2012.2011+2012.2}=\frac{2012.\left(2013-2012\right)}{2012.\left(2011+2\right)}=\frac{2012}{2012.2013}=\frac{1}{2013}\)

\(\Rightarrow A=B\)

_SoyaKun Official_
Xem chi tiết
KCLH Kedokatoji
31 tháng 7 2020 lúc 9:20

\(MS=2011.2013+2012\)

\(=\left(2012-1\right).2013+2012\)

\(=2012.2013-2013+2012\)

\(=2013.2012-1\)

\(=TS\)

Vậy phân số đã cho bằng 1.

Khách vãng lai đã xóa
Kiyotaka Ayanokoji
31 tháng 7 2020 lúc 9:38

Trả lời:

\(\frac{2013.2012-1}{2011.2013+2012}=\frac{2013.\left(2011+1\right)-1}{2011.2013+2012}\)

                                        \(=\frac{2011.2013+2013-1}{2011.2013+2012}\)

                                        \(=\frac{2011.2013+2012}{2011.2013+2012}\)

                                        \(=1\)

Học tốt

Khách vãng lai đã xóa
Khánh Ngọc
31 tháng 7 2020 lúc 9:40

\(\frac{2013.2012-1}{2011.2013+2012}\)

\(=\frac{2013.2012-1}{2011.2013+2013-1}\)

\(=\frac{2013.2012-1}{2012.2013-1}\)

\(=1\)

Khách vãng lai đã xóa
Nguyễn Huy Tuấn
Xem chi tiết
Duc Loi
6 tháng 6 2018 lúc 10:36

Gọi tử số là \(C\)và mẫu số là \(D\)

Ta có:

\(A=\frac{C}{D}\)

\(C=\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.102}+...+\frac{1}{101.400}\)

\(C=\frac{1}{299}\left[\left(1-\frac{1}{300}\right)\right]+\left(\frac{1}{2}-\frac{1}{301}\right)+\left(\frac{1}{3}-\frac{1}{302}\right)+...+\left(\frac{1}{101}-\frac{1}{400}\right)\)

\(C=\frac{1}{299}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)\)

\(D=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)

\(D=\frac{1}{101}\left[\left(1-\frac{1}{102}\right)+\left(\frac{1}{2}-\frac{1}{103}\right)+\left(\frac{1}{3}-\frac{1}{104}\right)+...+\left(\frac{1}{299}-\frac{1}{400}\right)\right]\)

\(D=\frac{1}{101}\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-\frac{1}{104}-...-\frac{1}{400}\right)\)

\(D=\frac{1}{101}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)\)

\(\Rightarrow A=\frac{C}{D}=\frac{\frac{1}{299}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)}{\frac{1}{101}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)}\)

                     \(=\frac{\frac{1}{299}}{\frac{1}{101}}=\frac{101}{299}.\)

Vậy \(A=\frac{101}{299}.\)

Đỗ Ngọc Hải
6 tháng 6 2018 lúc 10:23

Cần lắm k, t lười lắm :))

Lê Thị Diễm Quỳnh
Xem chi tiết
soyeon_Tiểu bàng giải
11 tháng 7 2016 lúc 17:05

\(\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2013}{1}+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}-2012}\)

\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2013}{1}-1\right)+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4024}{2012}-1\right)}\)

\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2012}}\)

\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}\)

\(=\frac{1}{2012}\)

Ủng hộ mk nha ^_-

Nguyễn Đức Trường
Xem chi tiết
BRILLIANT!!!!
17 tháng 9 lúc 22:11

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

Dương đức Duy
Xem chi tiết