Tính tổng:
a) A = 12 + 22 + 32 + ... + n2
b) B = 1 + 2a + 3a2 + 4a3 + ... + (n+1)an
Tính giá trị của biểu thức:
a) M = 3 a 2 − 2 a 2 − 2 a − 1 3 ( − a − 3 ) tại a = -2;
b) N = ( 25 x 2 + 10 xy + 4 y 2 ) ( 5 x - 2 y ) tại x = 1 5 và y = 1 2 .
a) Thu gọn biểu thức M = 6 a 5 + 24 a 4 + 19 a 3 + 3 a 2 .
Thay a = -2. Ta tính được M = 52.
M = 3 . ( − 2 ) 2 − 2 . ( − 2 ) 2 − 2 . ( − 2 ) − 1 3 [ − ( − 2 ) − 3 ] = 52 .
b) Thu gọn biểu thức N = 125 x 3 – 8 y 3
Thay x = 1 5 và y = 1 2 vào biểu thức N.
N = 25 . 1 5 2 + 10 . 1 5 . 1 2 + 4 . 1 2 2 5 . 1 5 − 2 . 1 2 = 0 .
Tính M= A n + 1 4 + 3 A n 3 ( n + 1 ) ! , biết C n + 1 2 + 2 C n + 2 2 + 2 C n + 3 2 + C n + 4 2 = 149
A: 1/2
B: 2/3
C: 3/4
D: 4/5
Cho A1=1=12 ; A2=1+3=4=22 ; A3=1+3+5=9=32. Đoán xem An bằng bao nhiêu?
a) n2 b) (n+1)2 c) An d) Cả a và c.
Với A1 = 12. Ta sẽ chứng minh An =1 + 3 + ... + (2n-1) = n2 (đáp án d)
Giả sử An đúng với n = k tức Ak = 1 + 3 + ... + (2k - 1) = k2. Ta sẽ chứng minh nó cũng đúng với Ak+1
Thật vậy: Ak+1 = 1 + 3 + ... + (2k-1) + (2k+1) = Ak + 2k + 1 = k2 + 2k + 1 = (k+1)2
Vậy...
Với A1 = 12. Ta sẽ chứng minh An =1 + 3 + ... + (2n-1) = n2 (đáp án d)
Giả sử An đúng với n = k tức Ak = 1 + 3 + ... + (2k - 1) = k2. Ta sẽ chứng minh nó cũng đúng với Ak+1
Thật vậy: Ak+1 = 1 + 3 + ... + (2k-1) + (2k+1) = Ak + 2k + 1 = k2 + 2k + 1 = (k+1)2
Vậy...
tìm số nguyên a biết 4a3 + 14a2 + 6a + 12 chia hết cho 1 +2a
Ta có đa thức đầu = (2a+1)(2a2 +6a) +12
Để đa thức đầu chia hết cho đa thức sau thì 2a+1 phải là ước lẻ của 12 hay 2a+1=+-1;+-3
Thế vào giải tiếp
Tính giá trị của biểu thức M = A n + 1 4 + 3 A n 3 ( n + 1 ) ! biết rằng C n + 1 2 + 2 C n + 2 2 + 2 C n + 3 2 + C n + 4 2 = 149
A. 3 4
B. 4 3
C. 15 9
D. 17 25
Tính giá trị của biểu thức M = A n + 1 4 + 3 A n 3 ( n + 1 ) ! biết rằng C n + 1 2 + 2 C n + 2 2 + 3 C n + 3 2 + 4 C n + 4 2 = 149
A. M = 3 4
B. M = 4 3
C. M = 15 9
D. M = 17 25
Chứng minh đẳng thức:
a) a 2 − 3 a a 2 + 9 − 6 a 2 27 − 9 a + 3 a 2 − a 3 . 1 − 2 a − 3 a 2 = a + 1 a với a ≠ 0 ; 3 ;
b) 2 5 b − 2 b + 1 . b + 1 5 b − 3 5 b − 3 5 : b − 1 b = 6 b 5 ( b − 1 ) với b ≠ 0 ; ± 1 .
Thực hiện phép tính đối với vế trái của mỗi đẳng thức.
Tính giá trị của biểu thức: A = A n + 1 4 + 3 A n 3 n + 1 ! . Biết rằng: C n + 1 2 + 2 C n + 2 2 + 2 C n + 3 2 + C n + 4 2 = 149
A. 4 3
B. 3 4
C. 5 4
D. 4 5
Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
Tính C = 1.4 + 2.5 + 3.6 + ...+ n(n + 3)
Tính D = 12 + 22 + 32 + ... + n2
\(B=1\cdot2\cdot3+2\cdot3\cdot4+...+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
=>\(4B=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+...+\left(n-1\right)\cdot n\left(n+1\right)\cdot4\)
=>\(4B=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\left(5-1\right)+...+\left(n-1\right)\cdot n\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
=>\(4B=1\cdot2\cdot3\cdot4-1\cdot2\cdot3\cdot4+...+\left(n-2\right)\left(n-1\right)\cdot n\cdot\left(n+1\right)-\left(n-2\right)\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)+\left(n-1\right)\cdot n\left(n+1\right)\left(n+2\right)\)
=>\(4B=\left(n-1\right)\cdot n\cdot\left(n+1\right)\left(n+2\right)\)
=>\(B=\dfrac{\left(n-1\right)\cdot n\left(n+1\right)\left(n+2\right)}{4}\)
\(C=1\cdot4+2\cdot5+3\cdot6+...+n\left(n+3\right)\)
\(=1\cdot\left(1+3\right)+2\left(2+3\right)+...+n\left(n+3\right)\)
\(=\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)\)
\(=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+3\cdot\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+\dfrac{3n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)}{2}\cdot\left(\dfrac{2n+1}{3}+3\right)\)
\(=\dfrac{n\left(n+1\right)}{2}\cdot\dfrac{2n+1+9}{3}\)
\(=\dfrac{n\left(n+1\right)\left(n+5\right)}{3}\)
\(D=1^2+2^2+...+n^2\)
\(=1+\left(1+1\right)\cdot2+\left(1+2\right)\cdot3+...+\left(1+n-1\right)\cdot n\)
\(=1+2+3+...+n+\left(1\cdot2+2\cdot3+...+\left(n-1\right)\cdot n\right)\)
Đặt \(A=1+2+3+...+n;E=1\cdot2+2\cdot3+...+\left(n-1\right)\cdot n\)
\(E=1\cdot2+2\cdot3+...+\left(n-1\right)\cdot n\)
=>\(3E=1\cdot2\cdot3+2\cdot3\cdot3+...+\left(n-1\right)\cdot n\cdot3\)
=>\(3E=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+\left(n-1\right)\cdot n\left[\left(n+1\right)-\left(n-2\right)\right]\)
=>\(3E=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4+...+\left(n-1\right)\cdot n\left(n-2\right)-\left(n-1\right)\cdot n\left(n-2\right)+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
=>\(3E=\left(n-1\right)\cdot n\left(n+1\right)=n^3-n\)
=>\(E=\dfrac{n^3-n}{3}\)
\(A=1+2+3+...+n\)
Số số hạng là n-1+1=n(số)
Tổng của dãy số là: \(A=\dfrac{n\left(n+1\right)}{2}\)
=>\(D=\dfrac{n^3-n}{3}+\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{2n^3-2n+3n^2+3n}{6}\)
=>\(D=\dfrac{2n^3+3n^2+n}{6}\)
Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
Tính C = 1.4 + 2.5 + 3.6 + ...+ n(n + 3)
Tính D = 12 + 22 + 32 + ... + n2