Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Sơn
Xem chi tiết
Vân Anh Nguyễn
Xem chi tiết
Nguyễn Thùy Linh
12 tháng 11 2016 lúc 10:56

Ôn tập toán 7

Yến Nguyễn
Xem chi tiết
Trà My
Xem chi tiết
Nguyễn Thị Thúy Ngân
13 tháng 7 2017 lúc 21:15

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}=\frac{x-2y+4z}{20-2.9+4.6}=\frac{13}{26}=\frac{1}{2}\)

\(\frac{x}{20}=\frac{1}{2}\Rightarrow x=\frac{1}{2}.20=10\)

*\(\frac{y}{9}=\frac{1}{2}\Rightarrow y=\frac{1}{2}.9=\frac{9}{2}\)

*\(\frac{z}{6}=\frac{1}{2}\Rightarrow z=\frac{1}{2}.6=3\)

b)c) đề bn viết ko rõ

Đức Vĩnh Trần
Xem chi tiết
Nguyệt Ánh Ngô
Xem chi tiết
Hoàng Thị Như Quỳnh
20 tháng 12 2018 lúc 11:51

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

Hoàng Thị Như Quỳnh
20 tháng 12 2018 lúc 12:05

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

Hoàng Thị Như Quỳnh
20 tháng 12 2018 lúc 12:36

c) \(x:y:z=3:8:5\)\(3x+y-2z=14\)

\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)\(3x+y-2z=14\)

\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)

Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)

\(\frac{y}{8}=2\Rightarrow y=16\)

\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)

Vậy:\(x=6;y=16;z=10\)

Nguyễn Huy Hải
Xem chi tiết
Trịnh Xuân Diện
16 tháng 11 2015 lúc 22:09

Ta có:

\(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)=>\(\frac{x}{8}=\frac{y}{10}=\frac{z}{7}\)(Nân cả 3 vế với 1/4)

=\(\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}=\frac{3x+5y+7z}{24+50+49}=\frac{123}{123}=1\)

=>\(\frac{x}{8}=1\Rightarrow x=8\)

=>\(\frac{y}{10}=1\Rightarrow y=10\)

=>\(\frac{z}{7}=1\Rightarrow z=7\)

Mình học lớp 7 nha

Nguyễn Thị Cẩm Tú
Xem chi tiết
Thắng Nguyễn
19 tháng 10 2016 lúc 22:39

a)\(\frac{x-2}{x-3}=\frac{x+3}{x+5}\Rightarrow\left(x-2\right)\left(x+5\right)=\left(x-3\right)\left(x+3\right)\)

\(\Rightarrow x^2+3x-10=x^2-9\)

\(\Rightarrow x^2+3x-10-x^2+9=0\)

\(\Rightarrow3x=1\)

\(\Rightarrow x=\frac{1}{3}\)

Vậy...

b)Theo bài ra ta có:

\(xy=96;2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)

Đặt \(\frac{x}{3}=\frac{y}{2}=k\Rightarrow x=3k;y=2k\)

\(\Rightarrow xy=96\Leftrightarrow3k\cdot2k=96\)

\(\Leftrightarrow6k^2=96\)

\(\Leftrightarrow k^2=16\Leftrightarrow k=\pm4\)

Nếu k=4 thì \(\hept{\begin{cases}x=3k=3\cdot4=12\\y=2k=2\cdot4=8\end{cases}}\)

Nếu k=-4 thì \(\hept{\begin{cases}x=3k=3\cdot\left(-4\right)=-12\\y=2k=2\cdot\left(-4\right)=-8\end{cases}}\)

Vậy...

c)Theo bài ra ta có:

\(x-2y+z=34;5x=8y=3z\)\(\Leftrightarrow\frac{5x}{120}=\frac{8y}{120}=\frac{3z}{120}\Leftrightarrow\frac{x}{24}=\frac{y}{15}=\frac{z}{40}\)

\(\Leftrightarrow\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}\)

Áp dụng tc dãy tỉ :

\(\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}=\frac{x-2y+z}{24-30+40}=\frac{34}{34}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{24}=1\Rightarrow24\\\frac{2y}{30}=1\Rightarrow y=\frac{30}{2}=15\\\frac{z}{40}=1\Rightarrow z=40\end{cases}}\)

Vậy...

d)Theo bài ra ta có:

\(3x+5y+7z=123\);\(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\Leftrightarrow\frac{x}{8}=\frac{y}{10}=\frac{z}{7}\)

\(\Leftrightarrow\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}\)

Áp dụng tc dãy tỉ:

\(\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}=\frac{3x+5y+7z}{24+50+49}=\frac{123}{123}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{3x}{24}=1\Rightarrow x=\frac{24}{3}=8\\\frac{5y}{50}=1\Rightarrow y=\frac{50}{5}=10\\\frac{7z}{49}=1\Rightarrow z=\frac{49}{7}=7\end{cases}}\)

Vậy...

Phạm Ngọc Ánh
28 tháng 7 2018 lúc 13:58

Bạn giải câu c chi tiết hơn được ko ?

phuonglinh
Xem chi tiết
missing you =
16 tháng 7 2021 lúc 13:29

a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)

\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)

\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)

\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)

b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)

có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)

\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)

áp dụng t/c dãy tỉ số = nhau

\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)

\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)

\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)

\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)

c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)

thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(=>y=2\)

\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)

d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)

thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)

\(=>x=\dfrac{2.3}{3}=2\)