Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Nam Đặng
Xem chi tiết
Phạm An Khánh
Xem chi tiết
Mitt
Xem chi tiết

Ta thấy \(a.a\) \(không\) \(bằng\) \(2\)

⇒ Không số nào có bình phương bằng 2

⇒ Không tồn tại số hửa tỉ x thoả mãn x2=2

⇒ (đpcm)

Hoa Nhan
Xem chi tiết
zZz Cool Kid_new zZz
24 tháng 7 2020 lúc 22:11

Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)

\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)

Mặt khác áp dụng BĐT Cauchy Schwarz:

\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)

Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3

Khách vãng lai đã xóa
Bao Nguyen Trong
Xem chi tiết
Pham Van Hung
2 tháng 12 2018 lúc 11:04

\(x^4-x^3+2x^2-x+1=0\)

\(\Rightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)

\(\Rightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

Mà \(\hept{\begin{cases}x^2+1>0\forall x\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)>0\forall x}\)

Vậy ko tồn tại x thỏa mãn \(x^4-x^3+2x^2-x+1=0\)

Nguyệt
2 tháng 12 2018 lúc 11:05

\(x^4-x^3+2x^2-x+1=x^4-x^3+x^2+x^2-x+1\)

\(=x^2.\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2+1\right).\left(x^2-x+1\right)\)

vì (x2+1) \(\ge1\)

và \(x^2\ge x\Rightarrow x^2-x+1\ge1\)

=> \(\left(x^2+1\right).\left(x^2-x+1\right)\ge1\Rightarrowđpcm\)

Nguyệt
2 tháng 12 2018 lúc 11:09

đoạn này t sai r :(

\(x^2-x+1=x^2-\frac{2x.1}{2}+\frac{1}{2^2}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

=> \(\left(x^2+1\right).\left(x^2-x+1\right)\ge\frac{3}{4}\)=> đpcm

Jun Jun
Xem chi tiết
adam ff
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 3 2019 lúc 4:00

Unknow
Xem chi tiết