Tìm GTNN của \(\sqrt{x^2-6x+13}\)
giải nhanh mk tick nha
Giải nhanh Nha mk k nha:
Tìm GTNN của bt:
A= \(\sqrt{x+8}+\sqrt{x-1}\)
Tìm GTNN của bt K = \(\sqrt{5x+6\sqrt{5x-9}}\) + \(\sqrt{5x-6\sqrt{5x-9}}\)
Các bn giải nhanh cho mk nha
tìm GTNN của E=\(\left|\sqrt{x}-7\right|+\left|\sqrt{x}-5\right|\)
giúp mk nhanh nha mk đang cần gấp hãy giải cụ thể ra cho mk ngay và luôn càng tốt
tìm điều kiện của m để biểu thức : x2-2x+m có GTNN bằng 2
tìm m để biểu thức P=(4x3-2x2):x+6x+m có GTNN bằng 1998
bạn nào nhanh mk tick
a)x2-2x+m= (x-1)2+m-1 \(\ge m-1\) Min =2 => m-1 = 2 <=> m = 3
b) = 4x2-2x+6x+m= 4x2+4x+m = (2x+1)2+m-1 \(\ge m-1\) Min=1998 <=> m-1 = 1998 <=> m = 1999
giúp vs giải phương trình 6x-x^2-2-|2x-3|=|1-x|+|x-2|+|4x-13| nhanh có tick nha :)
giải các phương trình
a)\(\sqrt{4x^2-4x+1}-\dfrac{1}{2}=\dfrac{1}{3}\)
b)\(\sqrt{x-3}\times\left(x^2-6x+8\right)=0\)
c)\(x+\sqrt{x-1}=13\)
lm nhanh giúp mk nhé
a)Pt \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\dfrac{1}{3}+\dfrac{1}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{5}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{5}{6}\\2x-1=-\dfrac{5}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=\dfrac{1}{12}\end{matrix}\right.\)
Vậy...
b)Đk:\(x\ge3\)
Pt \(\Leftrightarrow\sqrt{x-3}\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\x-4=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=4\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
Vậy...
c)Đk:\(x\ge1\)
\(x+\sqrt{x-1}=13\)
\(\Leftrightarrow\sqrt{x-1}=13-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}13-x\ge0\\x-1=x^2-26x+169\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-27x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-17x-10x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left(x-17\right)\left(x-10\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left[{}\begin{matrix}x=17\\x=10\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=10\) (tm)
Vậy...
Tìm GTNN của M = \(x\sqrt{x}-6x+13\sqrt{x}+\frac{4}{\sqrt{x}}\)
Tìm GTLN, GTNN của biểu thức sau:
P=\(\frac{x^2-x+1}{x^2+x+1}\)
Giúp mk nha! Ai nhanh mk tick cho!
P(x^2+x+1)=x^2-x+1
=>Px^2+Px+P-x^2+x-1=0
=>(Px^2-x^2)+(Px+x)+(P-1)=0
=>x^2(P-1)+x(P+1)+(P-1)=0 (1)
coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm
Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3
=(P-3)(1-3P) >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3
\(A=\left|\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13}\right|\)
Tìm GTNN của A
\(A\ge0\)
Dấu "=" xảy ra <=> \(\sqrt{x^2-4x+5}=\sqrt{x^2+6x+13}\)
\(\Leftrightarrow x^2-4x+5=x^2+6x+13\)
\(\Leftrightarrow10x=-8\)
\(\Leftrightarrow x=-0.8\)