Df
Khoanh vào chữ cái đứng trước câu trả lời đúng: Tam giác DEF có D ^ = 40 ° , E = 60 ° thì:
A. DF < EF < DE
B. EF < DF < DE
C. DE < EF < DF
C. EF < DE < DF
Cho tam giác MNP = tam giác DEF. Tìm các cạnh bằng nhau giữa hai tam giác ?
MN = DE; MP= DF; NP = EF.
MN = DF; MP= DE; NP = EF.
MN = EF; MP= DF; NP = ED.
MN = DE; MP= EF; NP = DF.
Chọn câu đúng
A.
Tam giác DEF có DE = DF thì tam giác DEF cân tại E
B.
Tam giác DEF có DE = DF thì tam giác DEF cân tại F
C.
Tam giác DEF có DE = DF thì tam giác DEF cân tại D
D.
Tam giác DEF có FE = DF thì tam giác DEF cân tại D
cho tam giác DEF vuông tại D có DE=12cm, DF=20cm. kẻ đường cao DH (H ∈ EF)
a) chứng minh: DF.ED=FE.DH
b) tính DF, EH, HF
c) kẻ HN⊥DE tại N (N∈DE), HM⊥DF tại M (M∈DF) chứng minh: ∇DMN∾∇DEF
d) chứng minh: DN/DE+DM/DF=1
cho tam giác DEF vuông tại D có DE=12cm, DF=20cm. kẻ đường cao DH (H ∈ EF)
a) chứng minh: DF.ED=FE.DH
b) tính DF, EA, HF
c) kẻ HN⊥DE tại N (N∈DE), HM⊥DF tại M (M∈DF) chứng minh: ∇DMN∾∇DEF
d) chứng minh: DN/DE+DM/DF=1
a: \(S_{DEF}=\dfrac{DE\cdot DF}{2}=\dfrac{DH\cdot FE}{2}\)
nên \(DE\cdot DF=DH\cdot FE\)
c: Xét ΔDHE vuông tại H có HN là đường cao
nên \(DN\cdot DE=DH^2\left(1\right)\)
XétΔDHF vuông tại H có HM là đường cao
nên \(DM\cdot DF=DH^2\left(2\right)\)
Từ(1) và (2) suy ra \(DN\cdot DE=DM\cdot DF\)
hay DN/DF=DM/DE
Xét ΔDNM vuông tại D và ΔDFE vuông tại D có
DN/DF=DM/DE
Do đó: ΔDNM\(\sim\)ΔDFE
Tam giác DEF có DE < DF. Gọi d là đường trung trực của EF. M là giao điểm của d với DF.
a) Chứng minh DM + ME = DF.
b) Lấy bất kì điểm P nằm trên đường thẳng d (P khác M). Chứng minh DP + PE > DF.
c) So sánh chu vi của hai tam giác DEM và DEP.
Do DE < DF nên M thuộc cạnh DF.
a) Có M thuộc đường trung trực của EF nên ME = MF
=> DM + ME = DM + MF = DF.
b) Vì P thuộc đường trung trực của EF nên PE = PF =>DP + PE = DP + PF.
Xét tam giác DEF: DP + PF > DF.
Vậy DE + PE > DF.
c) Từ ý a) và ý b) suy ra DP + PE > DM + ME.
Vậy chu vi tam giác DEP lớn hơn chu vi tam giác DEM.
Cho tam giác DEF vuông tại D, đường cao DH. Hãy tính lần lượt độ dài các đoạn EF,DH nếu biết:
a)DE=3cm; DF=4cm
b)DE=12cm;DF=9cm
c)DE=12cm;DF=5cm
a) \(EF=\sqrt{3^2+4^2}=5\)(cm)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)
b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
Cho tam giác DEF có DI là phân giác của góc D; I thuộc EF, ED=10 cm , DF=6 cm , FI= 4,8 cm.
a) Tính EI
b) Qua I kẻ đường thẳng song song với DF cắt DE tại M. Tính ME;MD;IM
c) Chứng minh: DE/DF = ME/MD
d) Gọi N là trung điểm của DF; DI cắt MN tại K; FM cắt IN tại H.Chứng minh: KH//MI
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{IE}{IF}=\dfrac{DE}{DF}\)
=>\(\dfrac{IE}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>IE=8(cm)
b: Xét ΔEDF có MI//DF
nên \(\dfrac{EM}{ED}=\dfrac{EI}{EF}\)
=>\(\dfrac{EM}{10}=\dfrac{8}{12.8}=\dfrac{5}{8}\)
=>\(EM=\dfrac{50}{8}=6,25\left(cm\right)\)
Ta có: ME+MD=DE
=>MD+6,25=10
=>MD=3,75(cm)
Xét ΔEDF có IM//DF
nên \(\dfrac{IM}{DF}=\dfrac{EI}{EF}\)
=>\(\dfrac{IM}{6}=\dfrac{8}{12,8}=\dfrac{5}{8}\)
=>\(IM=6\cdot\dfrac{5}{8}=3,75\left(cm\right)\)
c: Xét ΔEDF có MI//DF
nên \(\dfrac{ME}{MD}=\dfrac{EI}{IF}\)
mà \(\dfrac{EI}{IF}=\dfrac{DE}{DF}\)
nên \(\dfrac{ME}{MD}=\dfrac{DE}{DF}\)
Cho tam giác DEF có DE=DF, H là trung điểm của EF.
a) Chứng minh: △DHE = △DHF
b) Kẻ HM vuông góc với DE (M thuộc DE), kẻ HN vuông góc với DF (N thuộc DF). Chứng minh DM = DN.
a: Xét ΔDHE và ΔDHF có
DH chung
HE=HF
DE=DF
Do đó: ΔDHE=ΔDHF
b: Xét ΔDMH vuông tại M và ΔDNH vuông tại N có
DH chung
\(\widehat{MDH}=\widehat{NDH}\)
Do đó: ΔDMH=ΔDNH
Suy ra: DM=DN
a, Xét ΔDHE và ΔDHF có:
DE = DF
DH ( cạnh chung )
HE = HF ( vì H là trung điểm của EF )
⇒ ΔDHE = ΔDHF ( C.C.C )
b, Xét ΔDMH vuông tại M và ΔDNH vuông tại N có :
DH (cạnh chung )
∠MDH = ∠NDH
⇒ ΔDMH=ΔDNH
⇒ DM=DN
cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=DF
a) Chứng minh AE//CF, BE//DF
b) chứng minh DE=DF