\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(1+\sqrt{2}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{2017}-\sqrt{2016}}{\left(\sqrt{2017}-\sqrt{2016}\right)\left(\sqrt{2017}+\sqrt{2016}\right)}.\)
\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2016}=\sqrt{2017}-1\)