Cho tam giác ABC, đường trung tuyến AM. Trên đoạn AB lấy I sao cho AI=1/3 AB, CI cắt AM tại K. Chứng minh: K là trung điểm của AM.
Cho tam giác ABC. AM là đường trung tuyến, đường thẳng song song với BC cắt các đoạn thẳng AB,AC,AM lần lượt tại D,E,N. a)Chứng minh N là trung điểm DE.
b) Gọi S là giao điểm của BN vả AC,K là giao điểm của CN và AB. Chứng minh KS//BC.
a) VÌ DE//BC
SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE
b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)VÀ\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)
\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC
Cho tam giác ABC vuông tại A (AB > AC), đường trung tuyến CM. Trên tia đối của tia MC lấy D sao cho MD = MC. Gọi K là điểm thuộc AM sao cho AK = \(\frac{2}{3}\)AM. Gọi N là giao điểm của CK và AD, I là giao điểm của BN và CD. Chứng minh rằng CD =3ID
: Cho đường tròn tâm (O) , đường kính AB. Trên đường tròn lấy 1 điểm C sao cho BC>AC.Tiếp tuyến tại A của (O) cắt BC tại D.Vẽ đường kính CE .Vẽ AM vuông góc với OD tại M .Gọi N là trung điểm của BC .Chứng minh :
1/Tứ giác ADON nội tiếp , xác định tâm
2/tứ gíac ACBE là hình chữ nhật
3/DM.DO=DC.DB
4/Gọi I là giao điễm cũa BM và NE .Chứng minh : I là trung điểm của BM
5/EN cắt (O) tại T .Chứng tỏ : DT là tiếp tuyến của (O)
6/ Qua C kẻ đường thẳng song song với OD cắt AB tại G và cắt ET tại K .Chứng minh : N là trung điểm của KT
Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM .
a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC
b) Chứng minh AM=AN
c) Chứng minh AI vuông góc với BC
Bài 2 : Cho tam giác vuông tại A có góc C=30 độ
a) Tính góc B
b) Vẽ tia phân giác của góc B cắt AC tại D
c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD
D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD
Tính góc AKB
Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB=tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Cho tam giác abc cân tại a, am là đường phân giác , i là trung diểm của ab. a, chứng minh tam giác ABM = tam giác ACM .
b, Gọi G là giao điểm của AM và CI . Chứng minh G là trọng tâm của tam giác ABC.
c, Gọi K là trung điểm của AC . Chứng minh B , G, K thẳng hàng
Cho tam giác nhọn ABC, M là trung điểm của BC. Đường vuông góc với AB tại B cắt đường thẳng AM tại D. Trên tia MA lấy điểm E sao cho ME = MD. chứng minh rằng CE vuông góc với AB
Cho tam giác ABC cân tại A, trung tuyến AM, BN của tatanm giác ABC cắt nhau tại G.
a/ Chứng minh tam giác AABM= tam giác ACM
b/ Chứng minh AM là tia phân hiác của góc BAC
c/ Trên tia đối của NG lấy điểm E sao cho NG=NE. Chứng minh AE//CG
d/ Chứng minh GM+GN>AB/2
mình chịu khoan . để mình tính đã
cho tam giác ABC, AB<AC,trung tuyến AM. Trên tia đối của tia MA lấy D sao cho MD=MA
a, CM tam giác ABM = tam giác DCM
b,CM góc BDC > góc ACB
c,Gọi K là trung điểm của AC, DK cắt BC tại I. Tính CI biết BC = 6cm
Cho tam giác nhọn ABC, M là trung điểm của BC. Đường vuông góc với AB tại B cắt đường thẳng AM tại D. Trên tia MA lấy điểm E sao cho ME = MD. chứng minh rằng CE vuông góc với AB