chung minh rang tu ti le thuc a/b=c/d ta suy ra duoc ti le thuc a/b=a-c/b-d
chung minh rang tu ti le thuc a/b=c/d (a-b khac 0,c-d khac 0) ta co the suy ra ti le thuc a+b/a-b=c+d/c-d
chung minh rang tu ti le thuc a/b=c/d (a-b khac 0,c-d khac 0) ta co the suy ra ti le thuc a+b/a-b=c+d/c
ai giai nhanh va dung cho toi hieu toi se tich nguoi do
Tu ti le thuc a+b/a-b=c+d/c-d hay chung minh rang a/b=c/d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
( Chia tử cho tử, mẫu cho mẫu )
Đó là điều phải chứng minh.
Nhớ k cho mình nhé! Thank you!!!
cho a,b,c khac 0. tu ti le thuc a/b=c/d hay suy ra ti le thuc a-b/a=c-d/c
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\\ \Rightarrow1-\dfrac{b}{a}=1-\dfrac{d}{c}\\ \Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow1-\dfrac{b}{a}=1-\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)(đpcm)
CHÚC BẠN HỌC TỐT......
tu ti le thuc a/b=c/d ta suy ra (coi cac bieu thuc deu xac dinh )
Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)(coi các biểu thức đều xác định) ta suy ra được các tỉ lệ thức sau:
\(\frac{a}{c}=\frac{b}{d};\frac{b}{a}=\frac{d}{c};\frac{c}{a}=\frac{d}{b}\).
tui chịu thôi!!!!!!!!!!!!!!!!
cho ti le thuc a/b=c/d chung minh rang a/a-b=c/c-d
Ta có :
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)
\(\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có đc:\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
Từ (1) và (2) suy ra đc:\(\frac{a}{a-b}=\frac{c}{c-d}\)
chung mjh rag tu ti le thuc a/b=c/d (a-b \(\ne\)0,c-d \(\ne\)0 )
ta co the suy ra ti le tuc a+b/c-b=c+d/c-d
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chung minh rang ty le thuc\(\frac{a}{b}\)=\(\frac{c}{d}\)(a-b khong =0,c-d khong =0) ta co the suy ra ti le thuc \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)
thay vào VT ta có:
\(\frac{a+b}{a-b}=\frac{bt+b}{bt-b}=\frac{b\left(t+1\right)}{b\left(t-1\right)}=\frac{t+1}{t-1}\left(1\right)\)
Thay vào VP ta có :
\(\frac{c+d}{c-d}=\frac{dt+d}{dt-d}=\frac{d\left(t+1\right)}{d\left(t-1\right)}=\frac{t-1}{t-1}\left(2\right)\)
Từ(1) và (2) => VT = VP đẳng thức được chứng minh
Ta có :\(\frac{a}{b}=\frac{c}{d}\left(=\right)\frac{a}{c}=\frac{b}{d}\)
áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\vec{\frac{a+b}{a-b}=\frac{c+d}{c-d}}\)
cho ti le thuc a/b=c/d chung minh rang (a+2c)(b+d)=(a+c)(b+2d)