M= \(\frac{10^{10}+1}{10^9-1}\)và N= \(\frac{10^9+1}{10^8-1}\)so sánh tỉ mỉ giùm nha
So sánh :
\(\frac{10^8+1}{10^9+1}và\frac{10^9+1}{10^{10}+1}\)
\(A=\frac{10^8+1}{10^9+1}=\frac{1}{10}\left(\frac{10^9+10}{10^9+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^9+1}\right)\)
\(B=\frac{10^9+1}{10^{10}+1}=\frac{1}{10}\left(\frac{10^{10}+10}{10^{10}+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^{10}+1}\right)\)
\(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)
\(\Rightarrow A>B\)
Đặt \(M=\frac{10^8+1}{10^9+1}\) và \(N=\frac{10^9+1}{10^{10}+1}\)
Có : \(M=\frac{10^8+1}{10^9+1}\)
\(\Rightarrow10M=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=1+\frac{9}{10^9+1}\)
Lại có : \(N=\frac{10^9+1}{10^{10}+1}\)
\(\Rightarrow10N=\frac{10^{10}+10}{10^{10}+1}=\frac{10^{10}+1+9}{10^{10}+1}=1+\frac{9}{10^{10}+1}\)
Vì \(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\) nên \(1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)
\(\Rightarrow10M>10N\Rightarrow M>N\)
Vậy M > N.
3. so sánh
a. \(\frac{10^9+4}{10^9-1}\)và \(\frac{10^9+1}{10^9-4}\)
b. \(\frac{7^{10}+1}{7^{10}-1}\)và \(\frac{7^{10}-1}{7^{10}-3}\)
c. \(\frac{n+2}{n+9}\)và \(\frac{n+7}{n+8}\)\(\left(n\in N\right)\)
So sánh:
\(A=\frac{10^8+1}{10^9+1}\)với\(B=\frac{10^9+1}{10^{10}+1}\)
Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)
Ta có:
\(B=\frac{10^9+1}{10^{10}+1}< \frac{10^9+1+9}{10^{10}+1+9}\)
\(B< \frac{10^9+10}{10^{10}+10}\)
\(B< \frac{10.\left(10^8+1\right)}{10.\left(10^9+1\right)}\)
\(B< \frac{10^8+1}{10^9+1}=A\)
=> B < A
Ta có:
\(10A=\frac{10\left(10^8+1\right)}{10^9+1}=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=\frac{10^9+1}{10^9+1}+\frac{9}{10^9+1}=1+\frac{9}{10^9+1}\)
tương tự với B ta có:\(10B=1+\frac{9}{10^{10}+1}\)
Vì 109+1<1010+1 \(\Rightarrow\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)
\(\Rightarrow1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)
\(\Rightarrow10A>10B\Leftrightarrow A>B\)
So sánh:
a) \(\frac{n}{3.n+1}\)và \(\frac{2.n}{6.n+1}\)
b) A= \(\frac{10^7+1}{10^8+1}\)và B= \(\frac{10^8+1}{10^9+1}\)
mau nha các bạn cần gấp
a) Có \(\frac{n}{3n+1}=\frac{2n}{2\left(3n+1\right)}=\frac{2n}{6n+2}< \frac{2n}{6n+1}\)
=) \(\frac{n}{3n+1}< \frac{2n}{6n+1}\)
b) Có B < 1 =) \(B< \frac{10^8+1+9}{10^9+1+9}=\frac{10^8+10}{10^9+10}=\frac{10.\left(10^7+1\right)}{10.\left(10^8+1\right)}=\frac{10^7+1}{10^8+1}=A\)
=) B < A
lấy mik mặt cười ở đâu vậy nhắn tin mik nha mik kết bạn nha!!!!
So sánh:
a) \(\frac{n}{3.n+1}\)và \(\frac{2.n}{6.n+1}\)
b) A= \(\frac{10^7+1}{10^8+1}\)và B= \(\frac{10^8+1}{10^9+1}\)
mau nha các bạn cần gấp
So sánh:
a, A= \(\frac{10^8+2}{10^8-1}\) ; B= \(\frac{10^8}{10^8-3}\)
b, A= \(\frac{8^{10}+1}{8^{10}-1}\) ; B=\(\frac{8^{10}-1}{8^{10}-3}\)
c, A= \(\frac{100^9+4}{100^9-1}\): B= \(\frac{100^9+1}{100^9-4}\)
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
a) Cho A = \(\frac{9^{18}+1}{9^{19}+1}\)và B = \(\frac{9^{19}+1}{9^{20}+1}\). So sánh A và B
b) Cho A = \(\frac{10^{2017}-1}{10^{2018}-1}\)và B = \(\frac{10^{2018}-1}{10^{2019}-1}\). So sánh A và B
a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)< \(\frac{9^{19}+1+8}{9^{20}+1+8}\)= \(\frac{9^{19}+9}{9^{20}+9}\)= \(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)= \(\frac{9^{18}+1}{9^{19}+1}\)= A
Vậy A > B
b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)> \(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)= \(\frac{10^{2018}-10}{10^{2019}-10}\)= \(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)= \(\frac{10^{2017}-1}{10^{2018}-1}\)= A
Vậy A < B.
NHỚ K CHO MK VỚI NHÉ !!!!!!!!
a)
\(9A=\frac{9^{19}+9}{9^{19}+1}=\frac{9^{19}+1+8}{9^{19}+1}=1+\frac{8}{9^{19}+1}\)
\(9A=\frac{9^{20}+9}{9^{20}+1}=\frac{9^{20}+1+8}{9^{20}+1}=1+\frac{8}{9^{20}+1}\)
ta thấy \(9^{19}+1< 9^{20}+1\Rightarrow\frac{8}{9^{19}+1}>\frac{8}{9^{20}+1}\)
\(\Rightarrow9A>9B\Rightarrow A>B\)
M=$\frac{2022^{10}+1}{2023^{10}+1}$
N=$\frac{2023^{10}+1}{2024^{10}+1}$
so sánh M và N
So sánh:
A=\(\frac{10^{10}-1}{10^{11}-1}\)và B=\(\frac{10^9-1}{10^{10}-1}\)
10A=1011-10/1011-1
=1011-1-9/1011-1
=1 - 9/1011-1
10B=1010-10/1010-1
=1010-1-9/1010-1
=1 - 9/1010-1
Vì 9/1011-1<9/1010-1 nên 1 - 9/1011-1>1 - 9/1010-1
hay 10A>10B
=>A>B(vì 10>0)
\(A=\frac{10^{10}-1}{10^{11}-1}\)
Nhân cả hai vế của A với 10 ta có
\(10A=\frac{10\times\left(10^{10}-1\right)}{10^{11}-1}\)
\(10A=\frac{10^{11}-10}{10^{11}-1}\)
\(10A=\frac{10^{11}-1+9}{10^{11}-1}\)
\(10A=\frac{10^{11}-1}{10^{11}-1}+\frac{9}{10^{11}-1}=1+\frac{9}{10^{11}-1}\left(1\right)\)
\(B=\frac{10^9-1}{10^{10}-1}\)
Nhân cả hai vế của B với 10 ta có
\(10B=\frac{10\times\left(10^9-1\right)}{10^{10}-1}\)
\(10B=\frac{10^{10}-10}{10^{10}-1}\)
\(10B=\frac{10^{10}-1+9}{10^{10}-1}\)
\(10B=\frac{10^{10}-1}{10^{10}-1}+\frac{9}{10^{10}-1}=1+\frac{9}{10^{10}-1}\left(2\right)\)
\(Từ\left(1\right)và\left(2\right)\Rightarrow1+\frac{9}{10^{11}-1}< 1+\frac{9}{10^{10}-1}\)
\(\Rightarrow10A< 10B\)
Vậy A < B
ta có
\(10A=\frac{10^{11}-10}{10^{11}-1}=\frac{10^{11}-1+11}{10^{11}-1}=\frac{10^{11}-1}{10^{11}-1}+\frac{11}{10^{11}-1}\)
\(=1+\frac{11}{10^{11}-1}\)
\(10B=\frac{10^{10}-10}{10^{10}-1}=1+\frac{11}{10^{10}-1}\left(tươngtựA\right)\)
vì mẫu càng nhỏ thì phân số càng lớn nên
\(\frac{11}{10^{11}-1}< \frac{11}{10^{10}-1}\)
\(\Rightarrow10A< 10B\Rightarrow A< B\)
Vậy A<B