Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D.So sánh AD và DC
cho tam giác cân abc có a=36 độ, tia phân giác góc b cắt ac tại d.so sánh ad và cd
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
Bài :Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. a. Chứng minh: AD = HD b. So sánh độ dài cạnh AD và DC c. Chứng minh tam giác KBC là tam giác cân.
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a. Chứng minh: AD = HD
b. So sánh độ dài cạnh AD và DC c. Chứng minh tam giác KBC là tam giác cân.
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC ở D, So sánh AD và DC.
1 ) Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt AC tại D . So sánh AD và DC ?
Kẻ \(DI\perp BC\left(I\in BC\right)\)
\(\Delta ABD=\Delta IBD\left(ch-gn\right)\Rightarrow AD=ID\) (2 cạnh tương ứng)
Tâm giác DIC vuông tại I nên DI < DC (cạnh góc vuông luôn nhỏ hơn cạnh huyền)
Do đó AD < DC
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K
A CMR AD =HD
B so sánh độ dài cạnh Ad và DC
C CMR tam giác KBC là tam giác cân
cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D. kẻ DH vuông góc với BC.
a) chứng minh BA = BH, BD là đường trung trực AH
b) So sánh AD và DC, AD và AB
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH và DA=DH
Ta có: BA=BH
nên B nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: DA=DH
nên D nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AH
b: Ta có: AD=DH
mà DH<DC
nên AD<DC
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC ở D. So sánh độ dài AD, DC
A. AD > DC
B. AD < DC
C. AD = DC
D. Không so sánh được