Giải phương trình trùng phương x4+2x2-3=0
x4−2x2−3=0
Phương trình trùng phương
Đặt \(x^2=t\) \(\left(t\ge0\right)\)
\(\Rightarrow t^2-2t-3=0\\ \Leftrightarrow\Delta=\left(-2\right)^2-4.1.\left(-3\right)=16\\ \Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{2+\sqrt{16}}{2.1}=3\\t_2=\dfrac{2-\sqrt{16}}{2}=-1\end{matrix}\right.\)
\(\Rightarrow t=3\) vì \(t\ge0\)
\(\Rightarrow x^2=3\\ \Rightarrow\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\)
Đặt t = x² (t ≥ 0)
Phương trình tương đương:
t² - 2t - 3 = 0
Ta có: a - b + c = 1 - (-2) - 3 = 0
Phương trình có hai nghiệm:
t₁ = -1 (loại)
t₂ = 3 (nhận)
Với t₂ = 3
⇔ x² = 3
⇔ x = √3; x = -√3
Vậy S = {-√3; √3}
Giải phương trình x 4 − 2 x 2 − 3 = 0
Cách 1:
x 4 − 2 x 2 − 3 = 0 ⇔ x 4 − 3 x 2 + x 2 − 3 = 0 ⇔ ( x 2 − 3 ) ( x 2 + 1 ) = 0 ⇔ x 2 − 3 = 0 x 2 + 1 = 0 ⇔ x = ± 3 V n ( x 2 ≥ 0 ⇒ x 2 + 1 > 0 )
Vây phương trình có tập nghiệm S = − 3 ; 3
Cách 2: Đặt t=x2 ( t ≥ 0 ) ta có phương trình t2-2t-3=0 (2)
Ta có a-b+c=1+2-3=0 nên phương trình (2) có 2 nghiệm t1=-1(loại);t2=3(nhận)
Với t2=3 ⇔ x 2 = 3 ⇔ x = ± 3
Vậy phương trình có tập nghiệm S = − 3 ; 3
Giải các phương trình trùng phương 3 x 4 – (2 - 3 ) x 2 -2 =0
Giải các phương trình trùng phương sau: 3 x 4 – 6 x 2 = 0
Ta có: 3 x 4 – 6 x 2 = 0 ⇔ 3 x 2 ( x 2 – 2) = 0
Vậy phương trình đã cho có 3 nghiệm: x 1 = 0; x 2 = -√2 ; x 3 = √2
Giải các phương trình trùng phương: x4 – 5x2 + 4 = 0
x4 – 5x2 + 4 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)
Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm t1 = 1; t2 = c/a = 4
Cả hai giá trị đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1;
+ Với t = 4 ⇒ x2 = 4 ⇒ x = 2 hoặc x = -2.
Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.
Giải các phương trình trùng phương x 4 -8 x 2 – 9 =0
Đặt m = x 2 .Điều kiện m ≥ 0
Ta có: x 4 -8 x 2 – 9 =0 ⇔ m 2 -8m -9 =0
Phương trình m 2 - 8m - 9 = 0 có hệ số a = 1,b = -8,c = -9 nên có dạng a – b + c = 0
suy ra: m 1 = -1 (loại) , m 2 = -(-9)/1 =9
Ta có: x 2 =9 ⇒ x= ± 3
Vậy phương trình đã cho có 2 nghiệm : x 1 =3 ; x 2 =-3
Giải các phương trình trùng phương:
a ) x 4 − 5 x 2 + 4 = 0 b ) 2 x 4 − 3 x 2 − 2 = 0 c ) 3 x 4 + 10 x 2 + 3 = 0
a) x 4 – 5 x 2 + 4 = 0 ( 1 )
Đặt x 2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : t 2 – 5 t + 4 = 0 ( 2 )
Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm t 1 = 1 ; t 2 = c / a = 4
Cả hai giá trị đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x 2 = 1 ⇒ x = 1 hoặc x = -1;
+ Với t = 4 ⇒ x 2 = 4 ⇒ x = 2 hoặc x = -2.
Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.
b) 2 x 4 – 3 x 2 – 2 = 0 ; ( 1 )
Đặt x 2 = t , điều kiện t ≥ 0.
Khi đó (1) trở thành : 2 t 2 – 3 t – 2 = 0 ( 2 )
Giải (2) : Có a = 2 ; b = -3 ; c = -2
⇒ Δ = ( - 3 ) 2 - 4 . 2 . ( - 2 ) = 25 > 0
⇒ Phương trình có hai nghiệm
Chỉ có giá trị t 1 = 2 thỏa mãn điều kiện.
+ Với t = 2 ⇒ x 2 = 2 ⇒ x = √2 hoặc x = -√2;
Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.
c) 3 x 4 + 10 x 2 + 3 = 0 ( 1 )
Đặt x 2 = t , điều kiện t ≥ 0.
Khi đó (1) trở thành : 3 t 2 + 10 t + 3 = 0 ( 2 )
Giải (2) : Có a = 3; b' = 5; c = 3
⇒ Δ ’ = 5 2 – 3 . 3 = 16 > 0
⇒ Phương trình có hai nghiệm phân biệt
Cả hai giá trị đều không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Giải các phương trình trùng phương sau: 2 x 4 + x 2 – 3 = x 4 + 6 x 2 + 3
Ta có: 2 x 4 + x 2 – 3 = x 4 + 6 x 2 + 3
⇔ 2 x 4 + x 2 – 3 – x 4 – 6 x 2 – 3 = 0
⇔ x 4 – 5 x 2 – 6 = 0
Đặt m = x 2 . Điều kiện m ≥ 0
Ta có: x 4 – 5 x 2 – 6 = 0 ⇔ m 2 – 5m – 6 = 0
∆ = - 5 2 – 4.1.(-6) = 25 + 24 = 49 > 0
∆ = 49 = 7
Ta có: x 2 = 6 ⇒ x = ± 6
Vậy phương trình đã cho có 2 nghiệm: x 1 = 6 , x 2 = - 6
Phương trình − x 4 + 3 − 2 x 2 = 0 có:
A. 1 nghiệm
B. 2 nghiệm
C. 3 nghiệm
D. 4 nghiệm
Ta có:
− x 4 + 3 − 2 x 2 = 0 ⇔ x 2 − x 2 + 3 − 2 = 0
⇔ x 2 = 0 x 2 = 3 − 2 ( V N ) ⇔ x 2 = 0 ⇔ x = 0
Đáp án cần chọn là: A