\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left(X-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\) \(\)
\(\Rightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-7=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
Tìm x
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-6\right)\left(x-8\right)=0\)
hay \(x\in\left\{6;7;8\right\}\)
\(\Leftrightarrow\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}\left(x-7\right)^{10}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}.\left(1-\left(x-7\right)^{10}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\\left[{}\begin{matrix}x-7=1\Rightarrow x=8\\x-7=-1\Rightarrow x=6\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x=\left\{6;7;8\right\}\)
tìm xϵZ biết:
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
Tìm x biết
a,\(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|\left(-3,2\right)+\dfrac{2}{5}\right|b,\left(x-7\right)^{x+1}+\left(x-7\right)^{x+11}=0\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)0
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\frac{-14}{5}\right|\)
\(\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\-\frac{5}{3}\end{cases}}}\)
Vậy...
\(\Rightarrow\left(x-7\right)^{x+1}.\left(1-\left(x-7\right)^{10}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1=1^{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=6;x=8\end{cases}}\)
Tìm x biết \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
=> (x-7)^x+1 + 1.[1-(x-7)^10] = 0
=> x-7 = 0 hoặc 1-(x-7)^10 = 0
=> x=7 hoặc x = 8 hoặc x = 6
k mk nha
tìm x biết
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
=> (x-7)x+1(1 - (x-7)10) = 0
=> (x-7)x+1 = 0
=> x-7 = 0 => x = 7
hoặc 1 - (x-7)10 = 0
=> (x-7)10 = 1
=> x-7 = 1
=> x = 8
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=8\end{cases}}\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-y\right)^{10}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7^{x+1}=0\\1-\left(x-y\right)^{10}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\\left(x-y\right)^{10}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=8\end{cases}}\)
Cái này ms đúng
Tìm x
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Rightarrow\left[x-7\right]^{x+1}\left[1-\left[x-7\right]^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left[x-7\right]^{x+1}=0\\1-\left[x-7\right]^{10}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x-7=0\\1-\left[x-7\right]^{10}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=7\\x-7=1\Rightarrow x=8\end{cases}}\)
( x - 7 ) ^ x + 1 - ( x - 7 ) ^ x + 11 = 0
=> ( x - 7 ) ^ x + 1 = ( x - 7 ) ^ x + 11
\(x+1\ne x+11\)
=> x - 7 = 1 hoặc 0
Với x - 7 = 1 thì x = 8
Với x - 7 = 0 thì x = 7
theo mình nghĩ là
x=8 hoặc 7
chính xác ddaaays nhé