Tìm gtnn của C = \(\frac{y.\sqrt{x-1}+x.\sqrt{y-2}}{xy}\)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y.\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(\Leftrightarrow A=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\right]:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{2\sqrt{xy}+x+y}{xy}:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{\sqrt{xy}\left(x+y\right)}{xy\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\Leftrightarrow A=\frac{\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
sai sót chỗ nào chỉ cho mk nhé. ý kia chốc nx làm nốt
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
a.\(DK:x,y>0\)
Ta co:
\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b.
Ta lai co:
\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)
Dau '=' xay ra khi \(x=y=4\)
Vay \(A_{min}=1\)khi \(x=y=4\)
Cho biểu thức:
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a, Rút gọn A
b, Biết xy=6. Tìm giá trị của x,y để A có GTNN
Cho biểu thức: \(M=\frac{y}{\sqrt{xy}-1}+\frac{x}{\sqrt{xy}+1}-\frac{x+y}{\sqrt{xy}}\)với x>y>0
Tìm GTNN của: \(N=x^2-\frac{M}{y\left(x+y\right)}\)
em viết nhầm đề nha.M = \(\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)mới đúng
cho x y z > 0 và x+y+z=1. Tìm GTNN của \(P=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{zx}{y+zx}}\)
Bài này phải tìm GTLN chứ nhỉ?!
Cho biểu thức:
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\times\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b, Biết xy=16. Tìm giá trị của x, y để A có GTNN
Bài 1 : Tìm GTNN của
P = \(\sqrt{x}+\frac{1}{\sqrt{x}+4}\)
Bài 2 cho x >= 1 , y >=2 . Tìm GTLN của
P = \(\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
1.\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
C/m \(^{x^2+y^2=1}\)
Tìm GTNN của A=\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\) biết x,y,z>0 và \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
2/ Ta có
\(\frac{x+y}{4}+\frac{x^2}{x+y}\)\(\ge\)x
\(\frac{y+z}{4}+\frac{y^2}{y+z}\ge y\)
\(\frac{z+x}{4}+\frac{z^2}{z+x}\ge z\)
Từ đó ta có VT \(\ge\)\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2}\)= \(\frac{1}{2}\)
Đạt được khi x = y = z = \(\frac{1}{3}\)
Bài này trình bày dài làm biếng làm quá
1/ Ta có
\(\frac{x^2+\left(1-y^2\right)}{2}\ge x\sqrt{1-y^2}\)
\(\frac{y^2+\left(1-x^2\right)}{2}\ge y\sqrt{1-x^2}\)
=> \(1\ge x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
Dấu bằng xảy ra khi x2 = 1 - y2 và y2 = 1 - x2
Hay x2 + y2 = 1
Cho x, y là các số thực không âm và thỏa mãn điều kiện \(x^3+y^3+xy=x^2+y^2\). Tìm GTNN và GTLN của
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3