Bạn tham khảo ở đây ^^
http://olm.vn/hoi-dap/question/624173.html
Bạn tham khảo ở đây ^^
http://olm.vn/hoi-dap/question/624173.html
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
Cho biểu thức:
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a, Rút gọn A
b, Biết xy=6. Tìm giá trị của x,y để A có GTNN
Cho biểu thức: \(M=\frac{y}{\sqrt{xy}-1}+\frac{x}{\sqrt{xy}+1}-\frac{x+y}{\sqrt{xy}}\)với x>y>0
Tìm GTNN của: \(N=x^2-\frac{M}{y\left(x+y\right)}\)
cho x y z > 0 và x+y+z=1. Tìm GTNN của \(P=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{zx}{y+zx}}\)
Cho biểu thức:
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\times\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b, Biết xy=16. Tìm giá trị của x, y để A có GTNN
Bài 1 : Tìm GTNN của
P = \(\sqrt{x}+\frac{1}{\sqrt{x}+4}\)
Bài 2 cho x >= 1 , y >=2 . Tìm GTLN của
P = \(\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
1.\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
C/m \(^{x^2+y^2=1}\)
Tìm GTNN của A=\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\) biết x,y,z>0 và \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
Cho biểu thức: \(P=\left[\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{y}-y\sqrt{x}}{y-x}\right]:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a, Rút gọn P
b, Tìm GTNN của P
c, So sánh P và \(\sqrt{P}\)
Cho biểu thức
: \(M=\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)với x>y>0
Tìm GTNN của \(N=x^2-\frac{M}{y\left(x+y\right)}\)với x>y>0