Tìm 2 số nguyên dương biết 3 lần tổng của chúng bằng tích của hai số đó
Tìm 2 số nguyên dương biết 3 lần tổng hai số đó bằng hai lần tích của chúng
Lời giải:
Gọi 2 số đó là $a$ và $b$. Theo bài ra thì:
$3(a+b)=2ab$
$\Leftrightarrow 3a+3b-2ab=0$
$\Leftrightarrow 6a+6b-4ab=0$
$\Leftrightarrow 2a(3-2b)-3(3-2b)=-9$
$\Leftrightarrow (2a-3)(3-2b)=-9$
Đến đây là dạng pt tích đơn giản rồi. Bạn chỉ cần xét TH thôi/
1. Tìm 3 số nguyên dương biết tích của chúng gấp đôi tổng của chúng.
2. Tìm 4 số nguyên dương biết tích của chúng bằng tổng của chúng
1,
Gọi 3 số cần tìm là \(x,y,z\left(x,y,z\in Z;x,y,z>0\right)\)
Ta có : \(xyz=2\left(a+b+c\right)\)
Giả sử :\(x\ge y\ge z\Leftrightarrow xyz\le2.3x\)
\(xy\le6\) mà\(x,y\in Z\)
\(\Leftrightarrow xy\in\left\{1;2;3;4;5;6\right\}\)
Giải các trường hợp, ta được (x,y,z) là (1,3,8) ; (1,4,5) ; (2,2,4) và các hoán vị
Mk đang cần
Có thể giải hết trường hợp đó ra ko
Tìm 2 số nguyên dương, biết rằng tích của 2 số đó gấp 10 lần hiệu của chúng, tổng 2 số đó gấp 11 lần ƯCLN của 2 số đó và số lớn bằng BCNN của 2 số đó.
1. Hiệu của hai số là 4. Nếu tăng một số gấp 3 lần, giữ nguyên số kia thì hiệu của chúng bằng 60. Tìm hai số đó
2.Tìm hai số, biết rằng tổng của chúng gấp 5 lần hiệu của chúng, tích của chúng gấp 24 lần hiệu của chúng
1. Gọi hai số cần tìm là \(a,b\)trong đó \(a-b=4\).
TH1: Gấp \(a\)lên \(3\)lần.
\(\hept{\begin{cases}a-b=4\\3a-b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=56\\b=a-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=28\\b=24\end{cases}}\).
TH2: Gấp \(b\)lên \(3\)lần.
\(\hept{\begin{cases}a-b=4\\a-3b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=-56\\a=b+4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-24\\b=-28\end{cases}}\)
2. Gọi hai số là \(a,b\).
Có: \(\hept{\begin{cases}a+b=5\left(a-b\right)\\ab=24\left(a-b\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}4a=6b\\ab=24\left(a-b\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{2}{3}a\\\frac{2}{3}a^2=24\left(a-\frac{2}{3}a\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{2}{3}a\\\frac{2}{3}a^2-16a=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=0,b=0\\a=24,b=16\end{cases}}\)
Tìm hai số nguyên dương sao cho tích của hai số đó gấp 2 lần tổng của chúng .
gọi hai số đó là a và b
ta có :axb=2(a+b)
axb=2a+2b=>a=\(\frac{2a+2b}{b}\)
=>b=\(\frac{2a+2b}{a}\)
=>a+b=\(\frac{2a+2b}{a}\)+\(\frac{2a+2b}{b}\)=\(\frac{2ab+2ab+2ab+2ab}{ab}\)=\(\frac{8ab}{ab}\)=8
=>a+b=8=>axb=16=>a:b=4
1) Ta không có 2^m +2^n = 2^m+n với mọi số nguyên dương m,n.Nhưng có những số nguyên dương m,n thoả mãn đẳng thức đó
2)Viết phân số 1/4 thành tổng của hai phân số có tử bằng 1 và mẫu dương khác nhau
3)Thay 1/4 thành 1/6
4)Tìm hai số tự nhiên sao cho tổng của hai số ấy đúng bằng tích của chúng
5)Tìm hai số tự nhiên sao cho tích của hai số ấy gấp 4 lần tổng của chúng
1) cô hướng dẫn rồi
2)ta có 1/4 =3/12=1/12+1/6
3)ta có 1/6=3/18=1/9+1/18
4) giống câu 1)
bài 1
tìm 2 phân số có tử số bằng 1 các mẫu dương biết tổng của 2 phân số đó với tích của chúng thì dc 1/2
bài 2
tìm 2 số nguyên dương sao cho tích 2 số đó gấp đôi tổng của chúng
bài 3
tìm 2 số nguyên dương a và b sao cho
1/a + 1/b = 1/6
dễ làm
1:5/6va 1/8
2:55 va 99
3:3 va 7
mình làm rồi bạn ạ,mình mới học sag ny, cho minh nha
bài 1 ; tìm tích của hai số , biết rằng nếu giữ nguyên thừa số thứ nhất và tăng thừa số thứ hai lên 4 thì được tích mới là 8400 .
bài 2 ; tìm hai số biết tổng gấp 5 lần hiệu và bằng 1/6 tích của chúng .
bài 3 ; tìm hai số biết tổng gấp 3 lần hiệu và bằng nửa tích của chúng .
Tìm 3 số nguyên dương biết tổng ba số đó bằng một nửa tích của chúng
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt.
Ta có a. b. c= a + b + c.
Giả sử a = b = c ta có a∧2 = 3. Trình bày không cho nghiệm nguyên dương, nên a, b, c là 3 số nguyên dương phân biệt .
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c= a.b.c < 3a. Hay tích b.c < 3. Vì a; b; c là các số nguyên dương; b.c < 3. Do b; c nguyên dướng nên tích b, c nguyên dương hay b.c = 1 hoặc b.c = 2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3 + a= 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3.