chứng minh rằng B=1+3+3^2+3^3+3^4+...+3^11 chia hết cho 52
1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)
Vậy chia hết cho 30
\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)
Vậy chia hết cho 31
1,B=1+3+32+33+ . . .+311.Chứng minh rằng B chia hết cho 52
2,C=5+5253+54+ . . .+512.Chứng minh rằng c chia hết cho 30 và 31
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
chứng minh rằng:
1,A=1718 - 1716 chia hết cho 18
2,B=1+3+32+...+311 chia hết cho 52
3,C=3+33+35+...+331 chia hết cho 15
4,D=2+22+23+...+260 chia hết cho 21 và 15
\(A=17^{18}-17^{16}\\ =17^{16}\cdot\left(17^2-1\right)\\ =17^{16}\cdot\left(289-1\right)\\ =17^{16}\cdot288\\ =17^{16}\cdot18\cdot16⋮18\)
Vậy \(A⋮18\)
\(B=1+3+3^2+...+3^{11}\)
Ta có: \(52=4\cdot13\)
\(B=1+3+3^2+...+3^{11}\\ =\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\\ =1\cdot\left(1+3\right)+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\\ =\left(1+3\right)\cdot\left(1+3^2+...+3^{10}\right)\\ =4\cdot\left(1+3^2+...+3^{10}\right)⋮4\)
Vậy \(B⋮4\)
\(B=1+3+3^2+...+3^{11}\\ =\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\\ =1\cdot\left(1+3+3^2\right)+3^3\cdot\left(1+3+3^2\right)+...+3^9\cdot\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\cdot\left(1+3^3+...+3^9\right)\\ =13\cdot\left(1+3^3+...+3^9\right)⋮13\)
Vậy \(B⋮13\)
Vì \(4\) và \(13\) là hai số nguyên tố cùng nhau nên tao có \(B⋮4\cdot13\Leftrightarrow B⋮52\)
Vậy \(B⋮52\)
\(C=3+3^3+3^5+...3^{31}\)
\(C=3+3^3+3^5+...+3^{31}\\ =\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{29}+3^{31}\right)\\ =1\cdot\left(3+3^3\right)+3^4\cdot\left(3+3^3\right)+...+3^{28}\cdot\left(3+3^3\right)\\ =\left(3+3^3\right)\cdot\left(1+3^4+...+3^{28}\right)\\ =30\cdot\left(1+3^4+...+3^{28}\right)⋮15\left(\text{vì }30⋮15\right)\)
Vậy \(C⋮15\)
\(D=2+2^2+2^3+...+2^{60}\)
Tao có: \(21=3\cdot7;15=3\cdot5\)
\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\\ =\left(1+2\right)\cdot\left(2+2^3+...+2^{59}\right)\\ =3\cdot\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(D⋮3\)
\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\\ =2\cdot\left(1+2^2\right)+2^5\cdot\left(1+2^2\right)+...+2^{57}\cdot\left(1+2^2\right)+2^2\cdot\left(1+2^2\right)+...+2^{58}\cdot\left(1+2^2\right)\\ =\left(1+2^2\right)\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)\\ =5\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)⋮5\)
Vậy \(D⋮5\)
\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\cdot\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{58}\right)\\ =7\cdot\left(2+2^4+...+2^{58}\right)⋮7\)
Ta có:
\(D⋮3;D⋮5\Rightarrow D⋮3\cdot5\Leftrightarrow D⋮15\)
\(D⋮3;D⋮7\Rightarrow D⋮3\cdot7\Leftrightarrow D⋮21\)
Vậy \(D⋮15;D⋮21\)
Mình chỉ làm mẫu 1 câu thui nha:
\(A=17^{18}-17^{16}\)
\(A=17^{16}.17^2-17^{16}.1\)
\(A=17^{16}\left(17^2-1\right)\)
\(A=17^{16}.288\)
\(A=17^{16}.16.18\)
\(A⋮18\left(đpcm\right)\)
chứng minh rằng
A=2+22+23+2^4+...+260 CHIA HẾT CHO 21 , 15
B=1+3+32+33+34+35+...+311 CHIA HẾT CHO 52
C=5+52+53+54+...+512 CHIA HẾT CHO 30,31
B = 1 + 3 + 32 + 33 + 34 + 35 + ... + 311
B = (1 + 3 + 32 + 33 + 34 + 35) + (36 + 37 + 38 + 39 + 310 + 311)
B = 364 + 36.364
B = 364(36 + 1) \(⋮\) 52
chứng minh :
A= 1+3+3^2+3^3+3^4+...+3^11 , chia hết cho 52
B= 7+7^3+7^5+...+7^2017, chia hết cho 35
S=1+5+5^2+5^3+5^4+...+5^2010
Tìm số dư khi chia S cho 2, cho 20, cho 13
1.Chứng minh rằng:
A= 1+3+3^2+3^3+....+3^11 Chia hết cho 4
2. Chứng minh rằng:
C= 5+5^2+5^3+...+5^8 chia hết cho 30.
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30
Chứng minh rằng : B = 1 + 3 + 3 mũ 2 + .... + 3 mũ 11 chia hết cho 52.
C = 5 + 5 mũ 2 + 5 mũ 3 + ... + 5 mũ 12 chia hết cho 30 và 31
C=(5+52)+(53+54)+.......+(511+512)
=30+52.(51+52)+.....+510.(51+52)
=30.1+52.30+.....+510.30
=30.(1+52+.........+510) chia hết cho 30
chắc là đúng ahihihi
1. Cho A=3+3^2+3^3+.....+3^60
Chứng minh rằng:
a, A chia hết cho 36
b, B chia hết cho 52