Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Ưng Tố Như
Xem chi tiết
Hoàng Vũ
Xem chi tiết
s2 Lắc Lư  s2
11 tháng 5 2017 lúc 21:05

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{2x+y+z}{2}\)

cmtt => GTLN

alibaba nguyễn
12 tháng 5 2017 lúc 11:19

Tìm max:

Ta có:

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{2x+y+z}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\sqrt{2y+zx}\le\frac{2y+z+x}{2}\left(2\right)\\\sqrt{2z+xy}\le\frac{2z+x+y}{2}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(A\le\frac{2x+y+z}{2}+\frac{2y+z+x}{2}+\frac{2z+x+y}{2}=2\left(x+y+z\right)=4\)

Dấu = xảy ra khi \(x=y=z=\frac{2}{3}\)

Tìm min:

Ta có: \(\hept{\begin{cases}\sqrt{2x+yz}\ge0\\\sqrt{2y+zx}\ge0\\\sqrt{2z+xy}\ge0\end{cases}}\)

\(\Rightarrow A\ge0\)

Dấu = xảy ra khi \(\left(x,y,z\right)=\left(-2,2,2;2,-2,2;2,2,-2\right)\)

Nguyễn Võ Thảo Vy
Xem chi tiết
Trọng Lễ
Xem chi tiết
hotboy2002
Xem chi tiết
Nguyễn Hữu Thế
14 tháng 10 2015 lúc 12:45

rất tiếc em mới học lớp 6

Thành Nguyễn
20 tháng 1 2022 lúc 13:03

dhgxkkkkkkkkkkkkkkkkkkkkk

Khách vãng lai đã xóa
hotboy2002
Xem chi tiết
Thành Nguyễn
20 tháng 1 2022 lúc 13:02

jnymrjd,5

Khách vãng lai đã xóa
Ahihi
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 22:34

Bạn coi lại đề xem có viết nhầm biểu thức không thế?

Tiên Nguyễn Thủy
Xem chi tiết
Đinh quang hiệp
14 tháng 9 2018 lúc 15:57

\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)

\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)

\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)

dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)

vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)

Vũ Nguyễn Hiếu Thảo
Xem chi tiết