a. chứng minh rằng a2 +ab+b2 > hoặc = 0 với mọi a.b dấu = xảy ra khi nào
b. a2 - ab + b2 > hoặc = với mọi a.b dấu bằng xảy ra khi nào
CMR với mọi a,b thuộc Z,ta có:
a) Ia+bI nhỏ hơn hoặc bằng IaI+IbI
dấu = xảy ra khi a.b lớn hơn hoặc bằng 0.
b)Ia-bI lớn hơn hoặc bằng IaI-IbI
dấu = xảy ra khi a.b lớn hơn hoặc bằng 0
\(/a/+/b/>hoặc bằng / a+b/ Dấu\) =xảy ra khi a.b > hoặc bằng
Cho hai số a, b, không âm. Chứng minh: a + b 2 ≥ a b (Bất đẳng thức Cô-si cho hai số không âm). Dấu đẳng thức xảy ra khi nào?
Vì a ≥ 0 nên √a xác định, b ≥ 0 nên b xác định
Ta có: a - b 2 ≥ 0 ⇔ a - 2 a b + b ≥ 0
⇒ a + b ≥ 2 a b ⇔ a + b 2 ≥ a b
Dấu đẳng thức xảy ra khi a = b.
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
Cho a,b,c thuộc R . CM Bất đẳng thức sau và cho biết dấu = xảy ra khi nào?
g) a2+b2+c2-4a-6b-2c+14 ≥0
h) a 2+4b2+3c2 +14> 2a+12b+6c
Mn làm giúp dùm e bài này với ạ.
a: \(\Leftrightarrow a^2-4a+4+b^2-6b+9+c^2-2c+1>=0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-3\right)^2+\left(c-1\right)^2>=0\)
Dấu '=' xảy ra (a,b,c)=(2;3;1)
Bài 3 : (3đ)
1. Chứng minh rằng với hai số thực bất kì a,b ta luôn có : \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
Dấu bằng xảy ra khi nào ?
2. Cho ba số thực a,b,c không âm sao cho \(a+b+c=1\)
Chứng minh : \(b+c\ge16abc\) . Dấu bằng xảy ra khi nào ?
Nhân tiện em cũng hỏi luôn là tại sao khi em đăng bài mặc dù em đã điền đủ lớp môn ; mạng không lag mà sao vẫn không thể đăng bài được . Em phải mất tận 2 lần ghi lại đề bài mới có thể đăng bài được.
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
Cho biết a + b =1. Chứng minh a2 + b2 \(\ge\) \(\dfrac{1}{2}\) . Đẳng thức xảy ra khi nào?
Chi tiết một chút giúp em nha mn.
Lời giải:
$a^2+b^2=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})+(a+b-\frac{1}{2})$
$=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2+(a+b-\frac{1}{2})$
$\geq a+b-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}$
Vậy $a^2+b^2\geq \frac{1}{2}$
Giá trị này đạt tại $a-\frac{1}{2}=b-\frac{1}{2}=0$
$\Leftrightarrow a=b=\frac{1}{2}$
cho a, b là các số nguyên. Chứng minh rằng 10a^2+5b^2+12ab+4a-6b+13 lớn hơn hoặc bằng 0. Dấu = xảy ra khi nào?
/a/+/b/ > hoặc = /a+b/
Dấu "=" xảy ra khi a.b =0
Lưu ý /.../ là giá trị tuyệt đối
Rồi m hỏi hay m show đáp án đây?? :v
Ko đề nó dậy