tìm GTNN của biểu thức A= |3x- | + |5 - 3x|
Tìm GTNN của biểu thức A = x^3 - 3x^2 + 3x + 5 với x >= 2
a.tìm giá trị lớn nhất của biểu thức:P=\(\sqrt{3x-5}+\sqrt{7-3x}\)
b.cho x>1, tìm GTNN của biểu thức: A=2x+\(\dfrac{9}{x-1}\)
\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)
\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)
\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)
Tìm GTLN,GTNN của biểu thức
A= 25 - | 3x - 6 | - | 3x + 8 |
B= | 2x - 5 | - | 2x - 11 | + 3
Ta có: A = 25 - |3x - 6| - |3x + 8|
A = 25 - (|6 - 3x| + |3x + 8|) < = 25 - |6 - 3x + 3x + 8| = 25 - |14| = 25 - 14 = 11
Dấu "=" xảy ra <=> (3x - 6)(3x + 8) = 0
=> -8/3 \(\le\)x \(\le\)2
Vậy Max của A = 11 tại \(-\frac{8}{3}\le x\le2\)
Ta có: B = |2x - 5| - |2x - 11| + 3 > = |2x - 5 - 2x + 11| + 3 = |6| + 3 = 6 + 3 = 9
Dấu "=" xảy ra <=> (2x - 5)(2x - 11) = 0
=> \(\frac{5}{2}\le x\le\frac{11}{2}\)
Vậy Min của B = 9 tại \(\frac{5}{2}\le x\le\frac{11}{2}\)
bn Edogawa Conan làm GTNN đúng nhưng dấu "=" xảy ra sai r nhé, phải là \(\orbr{\begin{cases}x>2\\x< \frac{-8}{3}\end{cases}}\)
b) \(B=\left|2x-5\right|-\left|2x-11\right|\le\left|2x-5-2x+11\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(2x-5\right)\left(2x-11\right)\ge0\\\left|2x-5\right|\ge\left|2x-11\right|\end{cases}}\) ok đến đây giải đk ra là xong, ko hiêu thì hỏi
Tìm GTNN của biểu thức A=x^2-3x+5 với x≥2
\(A=x^2-2x-x+2+3=x\left(x-2\right)-\left(x-2\right)+3=\left(x-2\right).\left(x-1\right)+3\)
Ta có \(x\ge2\Rightarrow x-2\ge0\)
\(x\ge2\Rightarrow x-1\ge1\)
Do đó \(\left(x-2\right).\left(x-1\right)\ge0\)
\(\Rightarrow A=\left(x-2\right)\left(x-1\right)+3\ge3\)
Vậy GTNN của A= 3 khi x-2=0 hay x=2
tìm gtnn của biểu thức 2x^2-3x+5
tìm gtnn của biểu thức (3x+4)^4-5
Tìm GTTN của biểu thức :
\(A=\left(3x+4\right)^4-5\)
Ta có : \(\left(3x+4\right)^4\ge0\)
\(\Rightarrow A\ge-5\)
\(MinA=-5khix=\frac{-4}{3}\)
Học tốt!
tìm gtnn của biểu thức: C=1\3x^2-4x+5
\(C=\dfrac{1}{3x^2-4x+5}\) này à bạn , thì không có Min chỉ có MAx
\(=>C=\dfrac{1}{3\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{3}}\le\dfrac{1}{\dfrac{11}{3}}=\dfrac{3}{11}\)
dấu"=" xảy ra<=>x=2/3
a.Tìm GTNN của biểu thức A = 2 | x - 5 | - 2015
b. Tìm GTLN của biểu thức B= 205 - | 3x - 5 |
Giúp mình làm bài với !!
\(A=2\left|x-5\right|-2015\ge-2015\)
\(Min_A=-2015\Leftrightarrow x=5\)
\(B=205-\left|3x-5\right|\le205\)
\(Max_B=205\Leftrightarrow x=\frac{5}{3}\)
tìm GTNN, GTLN của biểu thức
a, A= | 3x+8,4 |-14,2 (tìm GTNN)
b, B= -| 10,2-3x |-14 (tìm GTLN)
c, C= | x-2002 |+| x-2001 | (tìm GTNN)