Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 11 2019 lúc 17:42

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

AB = AD (gt)

AD = BC (tính chất hình thang cân)

⇒ AB = BC do đó ΔABC cân tại B

⇒  ∠ BAC = ∠ BCA (tính chất tam giác cân) (*)

ABCD là hình thang có đáy là AB nên AB // CD

∠ BAC =  ∠ DCA (hai góc so le trong) (**)

Từ (*) và (**) suy ra:  ∠ BCA =  ∠ DCA (cùng bằng  ∠ BAC)

Vậy CA là tia phân giác của  ∠ BCD.

Sách Giáo Khoa
Xem chi tiết
Trần Đăng Nhất
27 tháng 7 2017 lúc 16:33

Ta có: \(AB = AD\)

\(AD = BC\) (ABCD là hình thang cân)

\(\Rightarrow AB=BC\)

Nối A và C

Ta có: \(AB=BC\Rightarrow\Delta ABC\)\(\Delta\) cân \(\Rightarrow\widehat{BAC}=\widehat{BCA}\) (1)

Ta lại có: AB // CD (ABCD là hình tang cân)

\(\Rightarrow\widehat{BAC}=\widehat{ACD}\) ( cặp góc so le trong) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BCA}=\widehat{ACD}\Rightarrow CA\) là phân giác của \(\widehat{C}\) (ĐPCM)

Rider kylin
Xem chi tiết
Rider kylin
Xem chi tiết
an do
Xem chi tiết
Đặng Quỳnh Ngân
15 tháng 9 2016 lúc 19:26

bn làm đúng, nhưng trình bày chưa sắc nét, làm dc như bn là quí lắm rùi,mk đúng cho bn

Duyên Lương
15 tháng 9 2016 lúc 16:19

Vì ABCD là hình thang cân(gt)

=>AD=BC mà AD=AB(gt)

=>BC=AB=> tam giác ABC cân tại B(Đlí)

                            =>góc BAC = góc BCA (Đlí) mà góc BAC = góc ACD(AB//CD)

                             =>góc BCA = gócACD

                             => ac là phân giác của gócC

                                              

               

FINN
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 21:40

Ta có: AB=AD

mà AD=BC

nên BA=BC

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{BCA}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

anhmiing
Xem chi tiết
Kudo Shinichi
24 tháng 8 2019 lúc 16:38

  A B C D

Theo bài ra ta có tứ giác ANCD là hình thang cân
=> AD = BC
Mà AB = AD
=> AD = BC = AB
=> tam giác ABC có AB = Bc=> ABC là tam giác cân
=> góc BAC = góc BCA  (1)
Vì AB//CD => góc BAC = góc ACD  (2)
Từ (1) và (2)
=> góc BCA = góc ACD
=> AC là đường phân giác của góc C
=> đpcm

2) a) Kẻ BN vuông AD , BM vuông CD 

Xét tam giác vuông BNA và BMD ta có :

AB = BC ; góc BNA = \(180^o-\widehat{BAD}=70^o\)nên góc BAN = BCD = \(70^o\)

\(\Rightarrow\)tam giác BMD = tam giác BND ( cạnh huyền - góc nhọn )

\(\Rightarrow\)\(BN=BM\Rightarrow BD\)là tia phân giác của góc D

b) Nối B với D do AB = AD nên tam giác ABD cân tại A khi đó góc ADB = ( \(180^o-110^o\)) : 2= \(35^o\)

\(\Rightarrow\widehat{ADC}=70^o\)

do góc ADC + góc BAD = \(180^o\Rightarrow\)AB// CD

Và góc BCD = góc ADC= \(70^o\)

Suy ra ABC là hình thang cân

đỗ thị thu thảo
Xem chi tiết
Hollow Ichigo
Xem chi tiết