A= 3_3^2+3^3+...+3^100
Tìm n thuộc N biết rằng 2A+3=3^n
Bài 1: Cho A=3 + 3 mũ 2 + 3 mũ 3 + ... +3 mũ 2010.
a, Tìm c/s tận cùng của A.
b, Chứng tỏ 2A+ 3 là 1 lũy thừa của 3.
c,Tìm x thuộc N biết: 2A-3=3 mũ x.
d, CMR A chia hết cho 13.
Bài 2: Chứng minh rằng:
a, 942 mũ 60 - 351 mũ 37 chia hêt cho 5.
b ( n + 2009) . ( n+ 2010) chia hết cho 2 với mọi STN n.
Bài 4: Tìm n thuộc N biết:
a, ( n + 9) chia hết cho ( n + 5)
b, 2 mũ n - 3 hết mũ - 2 mũ n = 448
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Tìm n thuộc N ,biết rằng
2A + 3 chia hết cho 3n
\(2A+3\) chia hết cho \(3^n\)
\(2A+3=2\cdot12+3\) (bạn cũng hiểu dấu chấm là nhân nhé!)
\(2\cdot12+3\)=\(24+3\)
=\(27\)
27 chia hết cho 3 nên n=27
Nhớ tk mk nha
Cho A= 3+32+33+...+3100. Tìm n thuộc N biết 2A+3=3n
A = 3 + 32 + 33 + 34 + . . . + 3100
3A = 32 + 33 + 34 + . . . + 3101
=> 3A - A = 3101 - 3
2A = 3101 - 3
=> 2A + 3 = 3101
Mà : 2A + 3 = 3n
=> n = 101
Vậy : n = 101
cho A=3+3^2+3^3+.....+3^99. Tìm số tự nhiên n, biết rằng : 2A+3=3^n
\(A=3+3^2+3^3+3^4+....+3^{98}+3^{99}\)
\(\Leftrightarrow3A=3\left(3+3^2+3^3+3^4+....+3^{98}+3^{99}\right)\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{98}+3^{99}+3^{100}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+....+3^{98}+3^{99}+3^{100}\right)-\left(3+3^2+3^3+3^4+....+3^{98}+3^{99}\right)\)
\(\Leftrightarrow2A=3^{100}-3\)
\(\Leftrightarrow2A+3=3^{100}=3^n\)
\(\Rightarrow n=100\)
Vậy \(n=100\)
Cho A=3+3^2+3^3+...+3^100. Tìm số tự nhiên n biết rằng 2A+3= 3^n
Ta có: 3A=32+33+...+3101
3A-A=2A=(32+33+...+3101)-(3+32+...+3100)
2A=3101-3
A=\(\frac{3^{101}-3}{2}\)
=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3
=(3101-3)+3
=3101
Mà 2A+3=3n
=>3101=3n
=>n=101
A=3+32+33+...+3100
2A=(3+32+33+...+3100)x2
2A=32+33+34...+3101
2A-A=3101-3
mà 3n=2A+3=3101-3+3=3101
suy ra n=101
Ta có : A = 3 + 32 + 33 + ... + 3100
3A = 32+33+34+...+3101
Vậy 2A = 3101 - 3
Vậy 2A + 3 = 3101
=> x = 101
Cho A = 3+32+33+....+32014.Tìm n thuộc N biết 2A+3=3n
A=3+3^2+3^3+.....+3^100 (1)
Nhân 2 vế với 3,ta được:
3A=3^2+3^3+3^4+......+3^101 (2)
Lấy(2)-(1),ta được:
2A=3^101-3
Thay 2A vào biểu thức , ta được:
3^101-3+3=3^n
3^101=3^n
n=101
cho a=3+3^2+3^3+....+3^100
Số tự nhiên N,biết rằng 2A +3 =3^N
A = 3 + 3^2 + 3^3 + ... + 3^100
3A = 3^2 + 3^3 + 3^4 + ... + 3^101
3A \(-\)A = ( 3^2 + 3^3 + 3^4 + ... + 3^101) \(-\)(3 + 3^2 + 3^3 + ... + 3^100)
2A = 3^101 \(-\)3
\(\Rightarrow\)2A + 3 = 3^101 \(-\)3 + 3 = 3^101
\(\Rightarrow\)3^N = 3^101
\(\Rightarrow\)N = 101
Cho A= 3 + 3 ^ 2 + 3 ^ 3 +...+ 3 ^ 100
Tìm số tự nhiên n, biết rằng 2A + 3 = 3^n
\(A=3+3^2+3^3+3^4+.......+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+.......+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+.......+3^{101}\right)-\left(3+3^2+3^3+.......+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow2A+3=3^{101}=3^n\)
Vậy \(n=101\) để \(2A+3=3^n\)
Cho $A = 3 + 3^2 + 3^3 + ... +3^{100}$.
Tìm số tự nhiên $n$, biết rằng $2A + 3 = 3^n$.
có A=3+3^2+3^3+..+3^100
3A=3.3+3^2.3+3^3.3+..+3^100.3
3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)
2A=3^101-3
LẤY 3^101-3+3=3^n
3^101=3^n
⇒n=101
Ta có (1)
(2)
Lấy (2) trừ (1) được .
Do đó,
Mà theo đề bài .
Vậy .
Ta có A=3+32+33+...+3100A=3+32+33+...+3100 (1)
3A=32+33+...+3100+31013A=32+33+...+3100+3101 (2)
Lấy (2) trừ (1) được 2A=3101−32A=3101−3.
Do đó, 2A+3=31012A+3=3101
Mà theo đề bài 2A+3=3n2A+3=3n.
Vậy n=101n=101.