\(A=3+3^2+3^3+3^4+.......+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+.......+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+.......+3^{101}\right)-\left(3+3^2+3^3+.......+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow2A+3=3^{101}=3^n\)
Vậy \(n=101\) để \(2A+3=3^n\)