Tìm một số có 3 chữ số biết rằng khi xoá chữ số ở hàng trăm thì số đó giảm 5 lần
Tìm số có 3 chữ số. Biết rằng khi ta xoá đi chữ số hàng trăm thì số đó giảm đi 5 lần?
Gọi số cần tìm là abc (b,c ∈ N ; a ∈ N*)
Vì khi xóa đi chữ số hàng trăm của một số tự nhiên có 3 chữ số thì số đó giảm đi 5 lần
......~> 5.bc = abc
....<~> 5.bc = 100.a + bc
....<~> 4.bc = 100.a
....<~> bc = 25.a
mà bc là số có 2 chữ số và 25.a lớn nhất là 99
~> a ∈ { 1;2;3 }
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* a = 1
......~> bc = 25
......~> số cần tìm abc là 125
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* a = 2
......~> bc = 25.2 = 50
......~> số cần tìm abc là 250
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* a = 3
.......~> bc = 25.3 = 75
.......~> số cần tìm abc là 375
Do đó 125 hoặc 250 hoặc 375 là các số cần tìm
Đây theo cách mik nghĩ là như thế này
Gọi \(\overline{abc}\)là số cần tìm
Theo đề bài, ta có:
\(\overline{abc}=\overline{bc}\cdot5\)
Ta nhận thấy \(\overline{bc}\)có chữ số tận cùng là c
Mà \(\overline{abc}\)cũng có chữ số tận cùng là c
Do đó có 2 Trường hợp
TH1: c có giá trị là 0
Khi c có giá tri là 0 thì \(5b=\overline{ab}\)( với \(b\ne0\)) (1)
Từ (1), b có giá trị là 2. Suy ra số cần tìm là 250
TH2: c có giá trị là 5
Khi c có giá trị là 5 thì: \(5b+2=\overline{ab}\)( với \(b\ne0\)) Loại bỏ trường hợp \(b=2\)
Ta thấy \(5b\)có chữ số tận cùng là 0 khi b là số chẵn Suy ra \(5b+2\)có chữ sô tận cùng là 2 (loại vìđã có trường hợp b=2)
Ta lại thất \(5b\)có chữ số tận là 5 khi b là số lẻ suy ra \(5b+2\)có chữ số tận cùng là 7(nhận)
Suy ra số cần tìm là 375
Vậy các số cần tìm là 375 và 250
Hết
Bổ sung cái khúc đó không loại b=2
Vậy thêm 1 số nữa 125
Tìm số tự nhiên có 3 chữ số . Biết rằng khi xoá đi chữ số hàng trăm thì số đó giảm đi 7 lần ??
Gọi abc là số tự nhiên phải tìm.
Theo đầu bài ta có:
abc = bc x 7
c x 7 = c nên c chỉ có thể là 0 hoặc 5
* Nếu c = 0 thì bc x7 = ab0
b x 7 = b thì b chỉ có thể là 5
Vậy abc = bc x 7 = 50 X 7 = 350
* Nếu c = 5 thì b5 x 7 ta có:
5 x 7 = 35; viết 5 nhớ 3
b x 7 + 3 không tìm được kết quả có chữ số hàng đơn vị là b. Vì vậy c không thể là 5.
Do đó :
c = 0
b = 5
a = 3
Số phải tìm là 350
Gọi abc là số tự nhiên phải tìm.
Theo đầu bài ta có:
abc = bc x 7
c x 7 = c nên c chỉ có thể là 0 hoặc 5
* Nếu c = 0 thì bc x7 = ab0
b x 7 = b thì b chỉ có thể là 5
Vậy abc = bc x 7 = 50 X 7 = 350
* Nếu c = 5 thì b5 x 7 ta có:
5 x 7 = 35; viết 5 nhớ 3
b x 7 + 3 không tìm được kết quả có chữ số hàng đơn vị là b. Vì vậy c không thể là 5.
Do đó :
c = 0
b = 5
a = 3
Số phải tìm là 350
Tìm số tự nhiên có ba chữ số, biết rằng nếu ta xoá đi chữ số 3 ở hàng trăm thì số đó giảm đi 7 lần.
Khi xóa chữ số \(3\)ở hàng trăm của số có ba chữ số thu được số mới kém số ban đầu \(300\)đơn vị.
Nếu số mới là \(1\)phần thì số cần tìm là \(7\)phần.
Hiệu số phần bằng nhau là:
\(7-1=6\)(phần)
Số cần tìm là:
\(300\div6\times7=350\)
Tìm số tự nhiên có ba chữ số, biết rằng nếu ta xoá đi chữ số 3 ở hàng trăm thì số đó giảm đi 7 lần.
tìm số có 3 chữ số biết rằng nếu xoá chữ số hàng trăm thì số đó giảm 7 lần
Gọi số có ba chữ số là abc, xóa chữ số hàng trăm thì được số bc
=> abc = 7 x bc
100 a + 10b + c = 7 x (10b + c)
100a + 10 b + c = 70 b + 7 c
100 a = 60b + 6 c (Trừ cả hai vế của dòng trên đi 10b và c)
50 a = 30b + 3c (chia cả hai vế của dòng trên cho 2)
50 a = 3 (10b +c) (*)
=> 50 a phải chia hết cho 3 => a chia hết cho 3 (vì số 50 không chia hết cho 3 nên thừa số a phải chia hết cho 3 để tích 50 a chia hết cho 3)
=> a = 0 hoặc 3 hoặc 6 hoặc 9
Trường hơp 1: a =0 (loại vì số abc trở thành số hai chữ số)
Trường hợp 2: a = 3, thay vào (*) => 50 x 3 = 3 (10b +c)
=> 10b + c = 50 => b và c là thương và dư của phép chia 50 chia cho 10.
Ta có 50 chia 10 được 5 dư 0 => b = 5, c = 0
=> Số cần tìm là 350
Trường hợp 3: a = 6, thay vào (*) => 50 x 6 =3 (10b +c)
=> 10b + c = 100
Vì b ≤ 9, c ≤ 9 => 10b + c ≤ 10.9 + 9 =99 <100
=> Không có chữ số b và c nào thỏa mãn 10b + c = 100
Trường hợp 4: a =9, cũng lý luận như trường hợp a = 6 ở trên
Kết luận: Số tìm được là 350
duyệt đi
tìm số có 3 chữ số biết rằng nếu xoá chữ số hàng trăm thì số đó giảm 7 lần
a)Tìm số có 3 chữ số biết rằng nếu xoá đi chữ số hàng trăm thì số đó giảm đi 7 lần
b)tìm số có 2 chữ số biết rằng số đó gấp 9 lần hàng đơn vị
a)gọi số cần tìm là abc.theo bài ra ta có:
abc=bc.7
=>100a=7bc-bc
=>100a=6bc
=>50a=3bc
50a chia hết cho 50 =>3bc chia hết cho 50
(3;50)=1 =>bc chia hết cho 50
=>bc=50
=>abc=50.7=350
vậy số cần tìm là 350
b)Gọi số cần tìm là ab.
Theo bài ra ta có: ab = 9.b
=> 10a + b = 9xb
=> 10a = 8b
=> 5a = 4b
<=>a/b = 4/5
=> a=4 ; b=5.
Vậy số cần tìm là 45.
khi xoá đi chữ số hàng trăm của một số tự nhiên có ba chữ số thì số đó giảm đi 5 lần tìm số đó
số đó là 500
vì 500:5=100
hok tốt
Gọi số đó là abc (a, b, c khác 0; b < 6)
Có abc = bc x 5
a x 100 +bc= bc x 4 + bc
a x 100 = bc x 4
a x 50 = bc x 2
a x 50 chia hết cho 50 => bc x 2 chia hết cho 50 => bc = 50 ( bc khác 0)
bc = 50 thì a x 50 =2 x 50=> a = 2
=> abc= 250
Vậy số đó là 250
Tìm số tự nhiên có 3 chữ số biết rằng nếu xoá đi chữ số hàng trăm thì số đó giảm 9 lần.
Gọi số cần tìm là abc (a khác 0; a,b,c là các chữ số)
Ta có:
bc.9 = abc
=> bc.9 = 100a + bc
=> bc.9 - bc = 100a
=> bc.8 = 100a
=> bc.2 = 25a (1)
\(\Rightarrow bc.2⋮25\)
Mà (2;25)=1 \(\Rightarrow bc⋮25\)
\(\Rightarrow bc\in\left\{25;50;75\right\}\)
+ Với bc = 25, thay vào (1) => a = 25.2:25 = 2
+ Với bc = 50, thay vào (1) => a = 50.2:25 = 4
+ Với bc = 75, thay vào (1) => a = 75.2:25 = 6
Vậy số cần tìm là 225; 450; 675