Tim x \(\in\) Z thoa
\(3\frac{1}{3}:2\frac{1}{2}\) <x<\(7\frac{2}{3}.\frac{3}{7}+\frac{5}{2}\)
Tim hai so x,y \(\in Z\) thoa man : \(\frac{x}{2}-\frac{1}{y}=\frac{2}{3}\)
=> 3( xy- 2 ) = 4 y => 3xy -4y = 6
=> \(y=\frac{6}{3x-4}\)
=> 3x -4 thuộc U(6) = { -6;-3;-2;-1;1;2;3;6}
3x-4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 | |
3x | -2 | 1 | 2 | 3 | 5 | 6 | 7 | 10 | |
x | 1 | 2 | |||||||
y | -6 | 3 |
Nguyen Huu The - ko giải được thì thôi , lúc nào cug nói " sorry , mới lớp 6 thui "
Nguyen Huu The lớp 7 đó, nhưng trình độ lớp 6 thui
Tim x \(\in\) Z thoa
\(3\frac{1}{3}:2\frac{1}{2}
câu 1 thiếu đề
câu 2:
Ta có: 2150=(26)25=6425
3100=(34)25=8125
Vì 6425<8125 nên 2150<3100
x o dau vay???
2^150 =(2^3)^50=8^ 50
3^100= (3^2)^50 =9^50
ma 8^50< 9^50=> 2^150<3^100
1) Cho 2 so duong x,y thoa man \(x+y\le xy\)
Tim GTLN cua bt \(B=\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\)
2) Cho \(\hept{\begin{cases}x,y,z\in\left[0;2\right]\\x+y+z=3\end{cases}}\)
CMR \(x^2+y^2+z^2\le5\)
Cho x,y,z >0
Thoa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}>=2\)
Tim Max A= xyz
Ta có: \(\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
Tương tự cho 2 cái còn lại:
\(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(z+1\right)\left(x+1\right)}};\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)
Nhân theo vế ta được:
\(\frac{1}{1+x}\cdot\frac{1}{1+y}\cdot\frac{1}{1+z}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)\(\Rightarrow xyz\le\frac{1}{8}\)
Dấu = khi \(\hept{\begin{cases}x=y=z\\\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2\end{cases}}\Leftrightarrow x=y=z=\frac{1}{2}\)
cho x;y;z duong thoa man xyz=1
tim gia tri nho nhat cua \(\frac{1}{x^2\left(y+z\right)}+\frac{1}{y^2\left(x+z\right)}+\frac{1}{z^2\left(x+y\right)}\)
a, rut gon A
b, tim x de a<-1
c, tim cac gia tri nguyen cua x de A co gia tri nguyen
cho bthuc B = \(\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x-2}\right)chia\left(x-2+\frac{16-x^2}{x+2}\right)\)rut gon B tính b khi /x/ = 1/2tim x de b=2tim x \(\in\) z de b \(\in\) zBài 2:
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)
b: Thay x=1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)
c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)
=>6(x-2)=-1/2
=>x-2=-1/12
hay x=23/12
cho x y z thoa man \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}va2x+3y-z=95khidox+y+z=baonhieu\)
Cho x,y,z nguyen duong thoa man x+y-z+1=0
Tim GTLN cua \(P=\frac{x^3y^3}{\left(x+yz\right)\left(y+xz\right)\left(z+xy\right)^2}\)
Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)
\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)
\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)
Áp dụng BĐT Cosi ta có:
\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)
\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)
Bài 1 : Cho bt M = \(\left(\frac{\sqrt{x}}{x-4}\right)+\left(\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{2}\)
a) tim dkxd va RG A .
b) tim \(x\in Z\)de \(2M\in Z\)
Bài 2 : cho bt A = \(\left(\frac{\sqrt{x}+1}{x-2\sqrt{x}}-\frac{1}{\sqrt{x}-2}\right).\left(x-3\sqrt{x}+2\right)\)
a) tìm ĐKXĐ và RG A
b) tìm x để \(A< \frac{1}{2}\)
c) tim \(x\in Z\)de \(A\in Z\)
Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\), \(\Rightarrow x=1\)( thỏa mãn ĐK)