Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đình Thông
Xem chi tiết
Trần Đình Thông
17 tháng 12 2015 lúc 20:08

nói chứ toán của anh choa đăng cho vi hihi

Phương Trình Hai Ẩn
Xem chi tiết
Trần Thị Loan
11 tháng 12 2015 lúc 20:19

Ta có 0= (x + y + z)= x+ y2 + z+ 2(xy + yz + zx) = x+ y+ z+ 2.0 

=> x+ y+ z= 0 <=> z = y = z = 0 

=> S = (0 - 1)1995 + 01996 + (0 + 1)1997 = -1 + 1 = 0

nguyenhuyhai
11 tháng 12 2015 lúc 20:19

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0

Nguyễn Bá Đề
24 tháng 3 2016 lúc 13:09

Ta có 0= (x + y + z)= x+ y2 + z+ 2(xy + yz + zx) = x+ y+ z+ 2.0 

=> x+ y+ z= 0 <=> z = y = z = 0 

=> S = (0 - 1)1995 + 01996 + (0 + 1)1997 = -1 + 1 = 0

kingstar omega
Xem chi tiết
thien ty tfboys
1 tháng 6 2015 lúc 15:08

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

Trần Cao Anh Triết
1 tháng 6 2015 lúc 15:09

copy trong câu hỏi tương tự à 

Satthuvipp_ro
1 tháng 6 2015 lúc 15:10

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x22 + y2+ z2 + 2 (xy+yz+xz) = 0

suy ra x2 + y2 + z2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)1995 + 01996 + (z+1)1997 = (-1) + 0 + 1 = 0

Vậy S = 0

BiBo MoMo
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
ILoveMath
20 tháng 11 2021 lúc 15:23

\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)

\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)

thư
Xem chi tiết
Đinh Đức Hùng
6 tháng 11 2017 lúc 21:17

Ta có :\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2=0\) (do xy + yz + xz = 0)

Ta lại thấy \(x^2;y^2;z^2\ge0\forall x;y;z\) nên \(x^2+y^2+z^2\ge0\forall x;y;z\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\) thay vào S ta được :

\(S=\left(-1\right)^{2005}+\left(-1\right)^{2006}+1^{2007}=1\)

Ngọc Linh
Xem chi tiết
_Guiltykamikk_
8 tháng 3 2018 lúc 10:47

ta có : xy + yz +zx = 0

        * yz = -xy-zx

\(\Rightarrow\)*xy = - yz - zx

         *zx= -xy-yz

ta có : M = \(\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)

          M = \(\frac{-yz-zx}{z}+\frac{-xy-yz}{y}+\frac{-xy-zx}{x}\)

          M = \(\frac{z\times\left(-y-x\right)}{z}+\frac{y\times\left(-x-z\right)}{y}+\frac{x\times\left(-y-z\right)}{x}\)

          M = -y - x - x - z - y - z

         M = -2y - 2x - 2z

         M = -2( x+y+z )

   mà x+y+z=-1

         M = (-2) . (-1)

         M =2

     

Nguyễn Hồng Hà My
8 tháng 3 2018 lúc 10:47

 Quản lý

BÙI NHẬT LINH
9 tháng 3 2018 lúc 18:16

Hì hì, tôi ko biết!😰😰😰😰

N.T.M.D
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 6 2021 lúc 17:38

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

nguyen phuong tram
Xem chi tiết
Thảo
22 tháng 9 2020 lúc 10:56

2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)

lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)

lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\) 

lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)

cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)

Khách vãng lai đã xóa
Thảo
22 tháng 9 2020 lúc 10:39

1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)

Khách vãng lai đã xóa
nguyen phuong tram
22 tháng 9 2020 lúc 12:50

mik cần c3 , ai làm giúp mik đc ko 

Khách vãng lai đã xóa