cho x - y =2. Tìm GTNN của:
a) P= xy+4
b) Q= x^2+y^2-xy
Cho x-y=2. Tìm GTNN của: a) P=xy +4 b) Q=x^2 +y^2-xy
Cho x-y=2 tìm gtnn của các đa thức
P=xy+4
Q=x^2+y^2-xy
Cho x-y=2. Tìm GTNN của Q=x^2+y^2+xy
\(Q=x^2+y^2+xy=\left(x^2+y^2-2xy\right)+3xy=\left(x-y\right)^2+3xy=3xy+4\)
\(x-y=2\Rightarrow y=x-2\)thay vào Q ta được :
\(Q=3x\left(x-2\right)+4=3\left(x^2-2x\right)+4=3\left[\left(x^2-2x+1\right)-1\right]+4=3\left(x-1\right)^2+1\)
Vì \(3\left(x-1\right)^2\ge0\forall x\) nên \(Q=3\left(x-1\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra <=> \(x=1\Rightarrow y=-1\)
Vậy GTNN của Q là 1 tại \(x=1;y=-1\)
Cho x,y >0 và \(^{\left(x+y-1\right)^2}\)= xy .
Tìm GTNN của P = \(\frac{1}{x^2+y^2}+\frac{1}{xy}+\frac{\sqrt{xy}}{x+y}\)
Cho x-y=2,tìm GTNN của các đa thức:
a)P=xy+4
b)Q=x^2+y^2-xy
Cho x -y = 2. Tìm GTNN:
A= xy+4
B=x\(^2\)+y\(^2\)- xy
Vì x-y=2 => y=x-2
=> A=x(x-2)+4=x2-2x+4=x2-2x+1+3=(x-1)2+3>=3
B=x2-2xy+y2+xy=(x-y)2+xy=4+xy>=3
Cho các số thực x ; y thỏa mãn \(\left(x+y-1\right)^2=xy\)
Tìm GTNN của biểu thức \(P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
Cho các số thực x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức
P= \(\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
Cho x>y và xy=15. Tìm GTNN của biểu thức Q = (x^2 + 1,2xy + y^2) / (x-y)
\(Q=\frac{x^2+1,2xy+y^2}{x-y}=\frac{x^2-2xy+y^2+3,2xy}{x-y}\)
\(=\frac{\left(x-y\right)^2+48}{x-y}=\frac{\left(x-y\right)^2}{x-y}+\frac{48}{x-y}\)
\(=x-y+\frac{48}{x-y}\ge2\sqrt{48}=8\sqrt{3}\)