Từ x-y=2=>x=y+2
a)Thay x=y+2 vào P ta có:
\(P=xy+4=\left(y+2\right)y+4=y^2+2y+4=\left(y^2+2y+1\right)+3=\left(y^2+2.y.1+1^2\right)+3\)
\(=\left(y+1\right)^2+3\ge3\) với mọi y
Dấu "=" xảy ra <=> \(\left(y+1\right)^2=0\) <=> \(y=-1\) <=> \(x=1\)
Vậy...........
b)Thay x=y+2 vào Q ta có:
\(Q=x^2+y^2-xy=\left(y+2\right)^2+y^2-\left(y+2\right).y=y^2+4y+4+y^2-y^2-2y\)
\(=y^2-2y+4=\left(y^2-2y+1\right)+3=\left(y^2-2.y.1+1^2\right)+3=\left(y-1\right)^2+3\ge3\) với mọi y
Dấu "=" xảy ra <=> y=1 <=> x=2
Vậy.................