Cho a,b,c khác 0,a+b+c=3 TÌm min 1/a^2b+2 + 1/b^c+2 +1/c^2a+2
\(\frac{a}{1+2b^2}+\frac{b}{1+2c^2}+\frac{c}{1+2a^2}\)Cho a,b,c>0 và ab+bc+ca=3 Tìm min P =
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)
cho 3 so a,b,c>0 và a+b+c=1 Tim min A=(a^2+b^2+c^2)+(ab+bc+ca)/(a^2b+b^2c+c^2a)
cho a+b+c=3/2 a,b,c>0 tìm min F=\(\dfrac{a^2}{a+2b^2}\)+\(\dfrac{b^2}{b+2c^2}\)+\(\dfrac{c^2}{c+2a^2}\)
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân
Cho a,b,c>0 t/m a+b+c=3.
Tìm min \(P=a^2+b^2+c^2+\dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho 3 số thực \(a,b,c\ge0\), \(a^2+b^2+c^2=4\left(a+b+c\right)-2bc\).
Tìm min \(P=8\left(c+b\right)+a^2+\dfrac{2025}{\sqrt{2a+2b+1}}+\dfrac{2025}{\sqrt{2c+1}}\)
\(4\left(a+b+c\right)=a^2+\left(b+c\right)^2\ge\dfrac{1}{2}\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le8\)
\(a^2+16-16\ge8a-16\)
\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{8100}{\sqrt{2a+2b+1}+\sqrt{2c+1}}\)
\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{48600}{6\sqrt{2a+2b+1}+6\sqrt{2c+1}}\)
\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{24300}{a+b+c+10}\)
\(\Rightarrow P\ge8\left(a+b+c+10+\dfrac{324}{a+b+c+10}\right)+\dfrac{21708}{a+b+c+10}-96\)
\(\Rightarrow P\ge16.\sqrt{324}+\dfrac{21708}{18}-96=1398\)
Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(4;0;4\right)\)
cho a,b,c khác 0 sao cho a^3b^3+b^3c^3+c^3a^3=2a^2b^2c^2 . Tính M=(1+a/b)(1+b/c)(1+c/a)
Cho a,b,c>0 và a+c+b=1. Tìm min \(Q=14\left(a^2+b^2+c^2\right)+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)