Tìm số nguyên dương x, y biết y^2 + xy^2 - x^2 = 4428
a) tìm số tự nhiên x, y thoả mãn
\(x^x+\left(xy\right)^y=5489855287\)
b) tìm số nguyên dương x,y biết \(y^2+xy^2-x^2=4428\)
Nhớ ghi cách giải nghe!!!!!! thanks you very much
Tìm x;y biết:
y^2+xy^2-x^2=4428
\(\Leftrightarrow y^2\left(1+x\right)-x^2+1=4429\)
\(\Leftrightarrow y^2\left(1+x\right)-\left(x^2-1\right)=4429\)
\(\Leftrightarrow y^2\left(x+1\right)-\left(x+1\right)\left(x+1\right)=4429\)
\(\Leftrightarrow\left(x+1\right)\left(y^2-x+1\right)=4429\)
x dương nên x + 1 là ước nguyên dương lớn hơn 1 của 4429. Mà U+(4429) = {1;43;103;4429}
Còn tự làm nốt nhé.
Tìm x;y€N biết:
y^2+xy^2-x^2=4428
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm các cặp số nguyên dương (x,y) thỏa mãn (xy+2)^2=x^2+y^2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Tìm các số nguyên dương thỏa mãn 9(x^2y^2+xy^3+y^2+x)=201/7 (xy^2+y^3+1)