A=1/3+1/15+1/35+...+1/899
tính:A=1/3+1/15+1/35+1/63+...+1/899
\(A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{899}\\ 2A=2\cdot\dfrac{1}{3}+2\cdot\dfrac{1}{15}+2\cdot\dfrac{1}{35}+2\cdot\dfrac{1}{63}+...+2\cdot\dfrac{1}{899}\\ 2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}\\ 2A=1-\dfrac{1}{31}\\ 2A=\dfrac{30}{31}\\ A=\dfrac{30}{31}\div2\\ A=\dfrac{30}{31\cdot2}=\dfrac{15}{31}\)
:))
a) A=3/4*8/9*15/16+...+899/900 b)B=1/1*2*3+1/2*3*1+1/3*4*5+...+1/98*99*100
c)C=1/2+1/14+1/35+1/65+1/104+1/152 d) D=1/1*2*3*4+1/2*3*4*5+1/3*4*5*6+...+1/27*28*29*30
giải giúp mk
a,
\(A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{900}\right)\\ =\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)...\left(1-\frac{1}{30}\right)\left(1+\frac{1}{30}\right)\\ =\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot...\cdot\frac{29}{30}\cdot\frac{31}{30}\\ =\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{29}{30}\cdot\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{31}{30}\\ =\frac{1\cdot2\cdot...\cdot29}{2\cdot3\cdot...\cdot30}\cdot\frac{3\cdot4\cdot...\cdot31}{2\cdot3\cdot...\cdot30}\\ =\frac{1}{30}\cdot\frac{31}{2}=\frac{31}{60}\)
b,
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{98\cdot99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+...+\frac{100-98}{98\cdot99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\\ =\frac{1}{2}\cdot\frac{4450-1}{9900}=\frac{1}{2}\cdot\frac{4449}{9900}=\frac{4449}{19800}=\frac{1483}{6600}\)
c, (Chịu :V)
d,
\(D=\frac{1}{3}\left(\frac{3}{1\cdot2\cdot3\cdot4}+\frac{3}{2\cdot3\cdot4\cdot5}+...+\frac{3}{27\cdot28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{4-1}{1\cdot2\cdot3\cdot4}+\frac{5-2}{2\cdot3\cdot4\cdot5}+...+\frac{30-27}{27\cdot28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}+...+\frac{1}{27\cdot28\cdot29}-\frac{1}{28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{1}{6}-\frac{1}{24630}\right)\\ =\frac{228}{4105}\)
Chúc bạn học tốt nha.
a) A=3/4*8/9*15/16...899/900 b)B=1/1*2*3+1/2*3*1+1/3*4*5+...+1/98*99*100 c)C=1/2+1/14+1/35+1/65+1/104+1/152 d) D=1/1*2*3*4+1/2*3*4*5+1/3*4*5*6+...+1/27*28*29*30
giair giups mk
Rút gọn các biểu thức sau:
a) A = 1+1/3^2+1/3^3+...+1/3^n
b) B = 1/2-1/2^2+1/2^3-1/2^4+...+1/2^99-1/2^100
c) C = 3/2^2 x 8/3^2 x 15/4^2 ... 899/30^2
A = 1 + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
3\(\times\) A = 3 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)
3A - A = 3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\)
2A = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)
A = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2
A = \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2
A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)
B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2B = 2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2B + B = 2 - \(\dfrac{1}{2^{100}}\)
3B = 2 - \(\dfrac{1}{2^{100}}\)
B = ( 2 - \(\dfrac{1}{2^{100}}\)): 3
B = \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3
B = \(\dfrac{2^{101}-1}{3.2^{100}}\)
A=(-1,7).2,3+1,7.(-3,7)-1,7.3-0,17:\(\frac{1}{10}\)
B=\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2017}-1\right)\)
C=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{899}{900}\)
D=\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}\)
E=\(1-3+3^2-3^3+...+3^{2016}-3^{2017}+3^{2018}\)
G=\(2+2^2+2^3+...+2^{60}\)
D=3/2^2 x 8/3^2 x 15/4^2 x ........ x 899/30^2 ^ là số mũ
A=1/1x2+1/2x3+...+1/2016x2017
B=1/1x6+1/6x11+........+1/496x501
tìm tích:
A,(1/2+1).(1/3+1).(1/4+1)...(1/99+1)
B,(1/2-1).(1/3-1).(1/4-1)...(1/100-1)
C,3/22.8/32.15/42...899/302
Tìm y:
-y:\(\dfrac{1}{2}\)-\(\dfrac{5}{2}\)=4\(\dfrac{1}{2}\)
Tính:
N = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)....\(\dfrac{899}{900}\).\(\dfrac{960}{961}\)
S=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{10.11.12}\)+\(\dfrac{1}{11.12.13}\)
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
Tính tổng S = \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{900\sqrt{899}+899\sqrt{900}}\)
Xét \(a_n=\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{899}}{899}-\frac{\sqrt{900}}{900}\)
\(S=1-\frac{\sqrt{900}}{900}=1-\frac{1}{30}=\frac{29}{30}\)