Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2017 lúc 3:19

Theo hệ quả định lí cosin, ta có cos A ^ = A B 2 + A C 2 − B C 2 2 A B . A C = 5 2 + 8 2 − 7 2 2.5.8 = 1 2 .

Do đó, A ^ = 60 ° .

 Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2018 lúc 11:05

Chọn B.

Theo định lí hàm cosin, ta có

Do đó 

Hồng Miêu
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 19:16

a.

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=7\)

\(S=\dfrac{1}{2}AB.AC.sinA=10\sqrt{3}\)

\(\Rightarrow h_a=\dfrac{2S}{BC}=\dfrac{20\sqrt{3}}{7}\)

\(R=\dfrac{BC}{2sinA}=\dfrac{7\sqrt{3}}{3}\)

b.

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{11}{34}\)

\(\Rightarrow sinA=\dfrac{3\sqrt{115}}{34}\)

\(S=\dfrac{1}{2}AB.AC.sinA=6\sqrt{115}\)

\(h_a=\dfrac{2S}{BC}=\dfrac{4\sqrt{115}}{7}\)

\(R=\dfrac{BC}{2sinA}=...\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 1 2019 lúc 11:28

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Các cung Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 tạo thành một đường tròn

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ x + 75 ° + 2 x + 25 ° + 3 x − 22 ° = 360 ° ⇒ 6 x = 282 ° ⇒ x = 47 °

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là các góc nội tiếp chắn các cung Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy chọn đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 11 2017 lúc 11:08

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Các cung Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 tạo thành một đường tròn

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ x + 75 ° + 2 x + 25 ° + 3 x − 22 ° = 360 ° ⇒ 6 x = 282 ° ⇒ x = 47 °

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là các góc nội tiếp chắn các cung Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy chọn đáp án C.

nhunhugiahan
Xem chi tiết
sjfdksfdkjlsjlfkdjdkfsl
18 tháng 2 2020 lúc 23:39

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

Khách vãng lai đã xóa
Nguyễn lan anh
18 tháng 2 2020 lúc 23:53

bài này dễ sao không biết

Khách vãng lai đã xóa
nameless
19 tháng 2 2020 lúc 0:52

Bài 8 :
Tự vẽ hình nhé ?
a) Vì ∆ABC cân tại A (GT)
=> ∠ABC = ∠ACB (ĐN)
Mà ∠ABC + ∠DBC = 180o (2 góc kề bù)
      ∠ACB + ∠ECB = 180o (2 góc kề bù)
=> ∠DBC = ∠ECB (1)
Xét ∆BCD và ∆CBE có :
BD = CE (GT)
∠DBC = ∠ECB (Theo (1))
BC chung
=> ∆BCD = ∆CBE (c.g.c) (2)
=> ∠BCD = ∠CBE (2 góc tương ứng)
Hay ∠BCI = ∠CBI
Xét ∆IBC có : ∠BCI = ∠CBI (cmt)
=> ∆IBC cân tại I (định lý)
=> IB = IC (ĐN) (3)
Từ (2) => DC = EB (2 cạnh tương ứng)
Mà ID + IC = DC, IE + IB = EB
=> ID = IE
Xét ∆IDE có : ID = IE (cmt)
=> ∆IDE cân tại I (ĐN)
b) Ta có : AB + BD = AD
    Mà AC + CE = AE
          AB = AC (GT)
          BD = CE (GT)
=> AD = AE 
Xét ∆ADE có : AD = AE (cmt)
=> ∆ADE cân tại A (ĐN)
=> ∠ADE = \(\frac{180^o-\widehat{DAE}}{2}\)(4)
Vì ∆ABC cân tại A (GT)
=> ∠ABC = \(\frac{180^o-\widehat{BAC}}{2}\)(5)
Từ (4), (5) => ∠ADE = ∠ABC, mà 2 góc này ở vị trí đồng vị
=> BC // DE (DHNB)
c) Xét ∆ABM và ∆ACM có :
AM chung
AB = AC (GT)
MB = MC (do M là trung điểm của BC)
=> ∆ABM = ∆ACM (c.c.c)
=> ∠AMB = ∠AMC (2 góc tương ứng)
Mà ∠AMB + ∠AMC = 180o (2 góc kề bù)
=> ∠AMB = ∠AMC = 180o : 2 = 90o 
Sau đó chứng minh ∆BIM = ∆CIM theo c.c.c bằng 3 yếu tố MI chung, MB = MC, IB = IC (Theo (3))
Rồi => ∠IMB = ∠IMC (tương ứng)
Mà ∠IMB + ∠IMC = 180o (kề bù) 
=> ..... (làm như phần trên)
Ta có : ∠AMB + ∠IMB = ∠AMI
Mà ∠AMB = 90o (cmt)
      ∠IMB = 90o (cmt)
=> 90o + 90o = ∠AMI
=> ∠AMI = 180o
=> A, M, I thẳng hàng (đpcm)
Vậy .....

Khách vãng lai đã xóa
Quynh Duong Thi
Xem chi tiết
Thu Thao
3 tháng 2 2021 lúc 9:12

\(AB^2=10^2\)

\(BC^2+AC^2=36+64=10^2\)

=> \(AB^2=AC^2+BC^2\)

=> t/g ABC vuông tại C

=> \(\widehat{ACB}=90^o\)

 

Phong Thần
3 tháng 2 2021 lúc 9:14

90 độ

nhung phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 22:49

b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)

c: Số đo góc ở đỉnh là:

\(180-2\cdot20^0=140^0\)

d: Số đó góc ở đáy là:

\(\dfrac{180^0-60^0}{2}=60^0\)

nhunhugiahan
Xem chi tiết
Huỳnh Quang Sang
19 tháng 2 2020 lúc 20:29

Lời giải:

D E B A F C

Ta có : \(\Delta ABC\)là tam giác đều => \(\widehat{A}=\widehat{B}=\widehat{C}\)

Xét tam giác AFD và tam giác BED có :

AD = BE (gt)

 \(\widehat{FAD}=\widehat{EBD}=60^0\)

AF = BD (gt)

=> \(\Delta AFD=\Delta BED\left(c-g-c\right)\)

=> DE = DF (hai cạnh tương ứng)                                      (1)

Xét tam giác ADF và tam giác CEF có :

AD = CE (gt)

\(\widehat{DAF}=\widehat{ECF}=60^0\)

AF = CF (gt)

=> \(\Delta ADF=\Delta CEF\)(c-g-c)

=> DF = EF (hai cạnh tương ứng)                                      (2)

Từ (1) và (2) => DE = DF = EF 

Vậy \(\Delta DEF\)là tam giác đều

Khách vãng lai đã xóa