Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Văn Dũng
Xem chi tiết
Bui Cam Lan Bui
Xem chi tiết
Trần Thị Loan
29 tháng 9 2015 lúc 11:19

Áp dụng bất đẳng thức giá trị tuyệt đối |a| + |b| \(\ge\) |a + b| ta có:

A = |x - 2001| + |x - 1| = |x - 2001| + |1 - x| \(\ge\) |(x - 2001) + (1 - x)| = |-2000| = 2000

=> A nhỏ nhất là 2000 ; chẳng hạn tại x = 1

Anh Trịnh Quốc
Xem chi tiết
Nguyễn Hồ Bảo Trâm
Xem chi tiết
Nguyễn Hồ Bảo Trâm
25 tháng 8 2020 lúc 13:20

help me, please

Khách vãng lai đã xóa
Khánh Ngọc
25 tháng 8 2020 lúc 13:39

1. a . 3x2 - 6x = 0

\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b. x3 - 13x = 0

\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)

c. 5x ( x - 2001 ) - x + 2001 = 0

<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0

\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)

Khách vãng lai đã xóa
Khánh Ngọc
25 tháng 8 2020 lúc 13:43

2. a. \(2x^2+4x-8=2\left(x+1\right)^2-10\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+1\right)^2-10\ge-10\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTNN của bt trên = - 10 <=> x = - 1

b. \(-x^2-8x+1=-\left(x+4\right)^2+17\)

Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy GTLN của bt trên = 17 <=> x = - 4

Khách vãng lai đã xóa
Nguyễn Thu Thảo
Xem chi tiết
bảo nam trần
20 tháng 1 2018 lúc 17:19

\(A=\left|x-2001\right|+\left|x-1\right|=\left|2001-x\right|+\left|x-1\right|\ge\left|2001-x+x-1\right|=2000\)

Dấu "=" xảy ra khi \(\left(2001-x\right)\left(x-1\right)\ge0\Leftrightarrow1\le x\le2001\)

Vậy AMax=2000 khi 1 =< x =< 2001

RF huy
Xem chi tiết
Ngọc Nguyễn Minh
Xem chi tiết
Lê Nguyên Bách
26 tháng 10 2015 lúc 12:55

a) /4x - 3/ + /5y+7,5/ >= 0

=> C>= 17,5

=> C min = 17,5 <=> 4x-3 = 0 và 5y + 7,5 =0 <=> x = 3/4 và y = -3/2

b) Áp dụng /A/ = /-A/

=> D = /x-2001/ + /2002-x/

Lại áp dụng /a/ + /b/ >= /a+b/

=> D>= /x-2001+2002-x/ = 1

=> D min = 1 <=> (x - 2001)(2002 - x) >= 0 <=> 2001 <= x <= 2002

Nguyen Thi Thao Ly
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự