(x+3y) (x+3y) - x^2 + xy
rút gọn: P=(2x+3y)/(xy+2x-3y-6) - (6-xy)/(xy+2x+3y+6) - (x^2 +9)/( x^2 -9)
Điều kiện \(x\ne\pm3;y\ne-2\):
\(P=\frac{2x+3y}{xy+2x-3y-6}-\frac{6-xy}{xy+2x+3y+6}-\frac{x^2+9}{x^2-9}.\)
=> \(P=\frac{2x+3y}{\left(y+2\right)\left(x-3\right)}-\frac{6-xy}{\left(y+2\right)\left(x+3\right)}-\frac{x^2+9}{\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{\left(2x+3y\right)\left(x+3\right)-\left(6-xy\right)\left(x-3\right)-\left(x^2+9\right)\left(y+2\right)}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{2x^2+3xy+6x+9y-6x+x^2y+18-3xy-x^2y-9y-2x^2-18}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{0}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}=0\)
=> P=0 (với mọi x khác 3, -3 và y khác -2)
g)(x+3y)(x-3y+2) h)(x+2y((x-2y+3) I)(x^2-xy+y^2)(x+y) J)(x^2-xy+y^2)(x+y) K)(5x-2y)(x^2-xy-1) L)(x^2y^2-xy+y)(x-y)
g: (x+3y)(x-3y+2)
=(x+3y)(x-3y)+2(x+3y)
=x^2-9y^2+2x+6y
h: (x+2y)(x-2y+3)
=(x+2y)(x-2y)+3(x+2y)
=x^2-4y^2+3x+6y
i: (x^2-xy+y^2)(x+y)
=x^3+x^2y-x^2y-xy^2+xy^2+y^3
=x^3+y^3
j: (x+y)(x^2-xy+y^2)=x^3+y^3
k: (5x-2y)(x^2-xy-1)
=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y
=5x^3-5x^2y-5x-2x^2y+2xy^2+2y
=5x^3-7x^2y+2xy^2-5x+2y
l: (x^2y^2-xy+y)(x-y)
=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2
Rút gọn biểu thức:
a) 2x(x-3y)+3y(2x + 5y)
b) (5x-3y)(2x+y)-x(10x-y)
c) (x-y)(x2+xy+y2)-(x+y)(x2-xy+y2)
a) 2x(x-3y)+3y(2x+5y)
=2x2-6xy+6xy+15y2
=2x2+15y2
b)(5x-3y)(2x+y)-x(10x-y)
=10x2+5xy-6xy-3y2-10x2+xy
=0
c)(x-y)(x2+xy+y2)-(x+y)(x2-xy+y2)
=x3-y3-(x3+y3)
=x3-y3-x3-y3
=-2y3
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
a)\(\frac{xy+3y}{xy}\)
b)\(\frac{x^2+3x-y^2-3y}{x^2-y^2}\)
c) \(\frac{-3x+3y}{x-y}\)
a, \(\frac{xy+3y}{xy}=\frac{y\left(x+3\right)}{xy}=\frac{x+3}{x}\)
b, \(\frac{x^2+3x-y^2-3y}{x^2-y^2}=\frac{\left(x^2-y^2\right)+3\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x-y\right)\left(x+y+3\right)}{\left(x-y\right)\left(x+y\right)}\)
=\(\frac{x+y+3}{x+y}=1\frac{3}{x+y}\)
c, \(\frac{-3x+3y}{x-y}=\frac{-3\left(x-y\right)}{x-y}=-3\)
(x+1)(3y-2)=-13
(x-4)(y-7)-2=-11
x+xy+y=9
xy-2x-3y=5
tìm x,y hộ tớ nhé
1.Rút gọn
a) ( x - 3 ) . ( x + 2) - (2x^3 - 2x^2 - 10x ) : 2x
b) B= ( - 4x^3y^y^2+ x^3y^4 ) : 2xy^2 - xy . ( 2x - xy )
a)=(x^2-x-6)-(x^2-x-5)
=x^2-x-6-x^2+x+5
=-1
b)đề bài kì cục
Cho x>3y va xy=1
Cm: (x^2+9y^2)/(x-3y)>=2√6
Tìm GTNN :
a) C = x^4 - 8xy - x^3y + x^2y^2 - xy^3 + y^4 +212
b) D = (x - 2)(y + 6)xy + 12x^2 - 24x + 3y^2 + 18 y + 36