Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Trường	Nguyên
Xem chi tiết
bin
14 tháng 4 2022 lúc 23:03

a) Vì ∆ABC cân tại A có AH là đường cao nên AH cũng là đường trung tuyến

Suy ra BH=CH

Xét ∆AHB và ∆AHC có

AH là cạnh chung

BH=CH (cmt)

AB=AC (∆ABC cân tại A)

Do đó ∆AHB=∆AHC

Xét ∆AMH ta có

AD vuông góc với MH (HD vuông góc AB)

Suy ra AD là đường cao của ∆AMH (1)

DH=DM (gt)

Nên AD là đường trung bình của ∆AMH (2)

Từ (1) và (2) suy ra ∆AMH cân tại A

Suy ra AM=AH

Khách vãng lai đã xóa
Bảnh Pháp
Xem chi tiết
Tran Thu Uyen
Xem chi tiết
nguyễn thị tuyết nhi
3 tháng 8 2016 lúc 16:12

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

Khuất Nhật Mai
27 tháng 7 2018 lúc 15:44

mình cũng có câu 3 giông thế

Vũ Hoàng Yến Nhi
Xem chi tiết
Thiên Võ
Xem chi tiết
thuc quyen thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 12:01

Bài 2: 

a: Xét tứ giác ABDM có 

DM//AB

DM=AB

Do đó: ABDM là hình bình hành

mà AB=AM

nên ABDM là hình thoi

Cấn Anh Khoa
Xem chi tiết
Vu Duc Manh
Xem chi tiết
lê thảo my
25 tháng 1 2016 lúc 21:16

hình như bài này sai đề

 

nguyenvankhoi196a
6 tháng 11 2017 lúc 16:53

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

Nguyễn Thị Hồng Nhung
18 tháng 8 2019 lúc 18:45

tam giác này là tam giác vuông hay gì thế ak

Lê Thiện
Xem chi tiết
肖战Daytoy_1005
13 tháng 4 2021 lúc 20:58

Tự vẽ hình nhé bạn:vv

a) Xét ∆MHC và ∆MKB:

\(\widehat{CMH}=\widehat{BMK}\) (2 góc đối đỉnh)

\(CM=MB\left(gt\right)\)

\(HM=MK\left(gt\right)\)

=> ∆MHC=∆MKB(c.g.c)

b) Vì ∆ABC vuông ở A có đường trung tuyến AM

\(\Rightarrow AM=\dfrac{1}{2}BC=MC=MB\)

=> ∆AMC cân tại M

=> MH vừa là đường cao vừa là đường trung tuyến của ∆AMC.

=> AH=CH

Mà theo câu a: ∆MHC=∆MKB 

=> CH=KB (2 cạnh tương ứng)

=> AH=KB

=> Đpcm

c) Xét ∆ABC có : AM và BH là 2 đường cao

=> I là trọng tâm của ∆ABC

Mà D là trung điểm của AB

=> CD là đường cao thứ 3 của ∆ABC

=> CD phải đi qua trọng tâm I

=> C, D, I thẳng hàng.

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:24

a) Xét ΔMHC và ΔMKB có

MH=MK(gt)

\(\widehat{HMC}=\widehat{KMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMHC=ΔMKB(c-g-c)

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:25

b)

Ta có: MH\(\perp\)AC(gt)

AB\(\perp\)AC(ΔABC vuông tại A)

Do đó: MH//AB(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có

M là trung điểm của BC(gt)

MH//AB(cmt)

Do đó: H là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Suy ra: AH=HC

mà CH=KB(ΔMHC=ΔMKB)

nên AH=BK(đpcm)