cho 3 số dương x,y,z. tìm số lớn nhất biết 2x^2+3y^2-2z^2=0
cho 3 số dương x,y,z. tìm số lớn nhất biết \(2x^2+3y^2-2z^2=0\)
\(2x^2+3y^2-2z^2=0\)
=>\(2x^2+3y^2=2z^2\)
Mà x; y; z dương nên z lớn nhất
Bài 1
a, Tính giá trị biểu thức: A= 1/2.(1+1/1.3)(1+1/2.4)(1+1/3.5)...(1+1/2015.2017)
b, Tính giá trị biểu thức:B= 2x^2-3x+5 với |x|=1/2
c, Tính giá trị biểu thức:C= 2x-2y+13x^3y^2(x-y)+15(y^2x-x^2y)+(2015/2016)^0 biết x-y=0
d, Tìm x,y biết (2x-1/6)^2 +|3y+12| bé hơn hoặc bằng 0
e, Tìm x,y,z biết: 3x-2y/4=2z-4x/3=4y-3z/2 và x+y+z=18
f, Tìm số nguyên x,y biết x-2xy+y-3=0
g, Cho đa thức f(x)= x^10-101x^9+101x^8-101x^7+...-101x+101. Tính f(100)
h, CMR từ 8 số nguyên dương tùy ý không lớn hơn 20, luôn chọn được ba số x,y,z là độ dài ba cạnh của một tam giác
Cho x,y, z là các số dương thỏa mãn : xyz=1
Tìm giá trị lớn nhất cua
A= 2/(x^2 + 2y^2 +3). +2/(y^2 + 2z^2 +3) + 2/(z^2 + 2x^2 +3)
Cho các số thực dương x,y,z thỏa mãn:x^2+y^2+z^2≥1/3
CMR: x^3/2x+3y+5z + y^3/2y+3z+5x + z^3/2z+3x+5y ≥1/30
GIÚP GẤP
\(P=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(P=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
\(P\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(x^2+y^2+z^2\right)}\)
\(P\ge\dfrac{x^2+y^2+z^2}{10}\ge\dfrac{1}{30}\)
\(P_{min}=\dfrac{1}{30}\) khi \(x=y=z=\dfrac{1}{3}\)
Cho \(x,y,z>0\) và \(2x^2+3y^2-2z^2=0.\)
CMR: \(z\)là số lớn nhất.
Giari giúp em bài này với ạ !
cho 3 số dương x,y,z thoả mãn 4x^2+4y^2+z^2=1/2(2x+2y+z)^2 .Tìm giá trị lớn nhất của biểu thức:
P= 8x^3+8y^3+z^3/(2x+2y+2z).(4xy+2yz+2xz)
Anh/ chị viết rõ đề bằng công thức toán được không ạ?
Vd : 1/2(2x+2y+z)^2 là \(\frac{1}{2\left(2x+2y+z\right)^2}\) hay sao?
\(P=8x^3+8y^3+\frac{z^3}{\left(2x+2y+2z\right)\left(4xy+2yz+2zx\right)}\) đúng ko ạ?
Cho 3 số thực dương x,y,z thỏa mãn \(x+y+z=3\) Tìm giá trị nhỏ nhất của
\(P=\dfrac{\left(2x+3y+z\right)^3}{3\sqrt[3]{z^2x^2}+1}+\dfrac{\left(2y+3z+x\right)^3}{3\sqrt[3]{x^2y^2}+1}+\dfrac{\left(2z+3x+y\right)^3}{3\sqrt[3]{y^2z^2}+1}\)
Cho \(x,y,z\) dương sao cho \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}=6\). Tìm giá trị lớn nhất của \(P=\dfrac{1}{3x+3y+2z}+\dfrac{1}{3y+3z+2x}+\dfrac{1}{3z+3x+2y}\)
cho x,y là các số thực dương thỏa mãn 3(x^4+y^4+z^4)-7(x^2+y^2+z^2)+12=0 . Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)
\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :
\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :
\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)
\(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)
\(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
Tương tự , chứng minh đc :
\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)
\(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)
\(\ge1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1