tính hợp lý
A= ( 1999* 1998+ 1998* 1997) * (1+ 1/2 : 3/2- 4/3)
tính : 2/1999+3/1998+4/1997=1999/2+1998/3+1997/4
tính
(1/2+1/3+1/4+...+1/2000)/(1999/1+1998/2+1997/3+...1/1999)
Tính nhanh:
( 1999 x 1998 + 1998 x 1997 ) x ( 1 + 1/2 : 1 1/2 - 1 1/3)
\(=\left(1999\times1998+1998\times1997\right)\times\left(1+\dfrac{1}{2}:1\dfrac{1}{2}-1\dfrac{1}{3}\right)\)
\(=\left(1999\times1998+1998\times1997\right)\times\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)\)
\(=\left(1999\times1998+1998\times1997\right)\times\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
\(=\left(1999\times1998+1998\times1997\right)\times\left(\dfrac{4}{3}-\dfrac{4}{3}\right)\)
\(=\left(1999\times1998+1998\times1997\right)\times0\)
\(=0\)
Tính các tổng sau:
1,S1=1+(-3)+5+(-7)+...+1997+(-1999)
2,S2=1+(-2)+(-3)+4+5+(-6)+(-7)+8+...+1997+(-1998)+(-1999)+2000
3,S3= 2-4+6-8+...+1998-2000
4,S4=2-4-6+8+10-12-14+16+...+1994-1996-1998+2000+2009
Các bạn ơi giúp mình với ạ,mình đang cần gấp !!!!
1, S1 = (-2) + (-2) +..+ (-2).
Có SS (-2) là :
(1997 - 1) : 4 +1 = 500 (số ).
Tổng số (-2) là: 500 x (-2) = (-1000)
Bạn chờ mình làm tiếp nha
Các bạn ơi làm giúp mình vs ạ,mình đang cần gấp lắm rồi!!!!HELP MEEEEEEEEEEEEEE
1/2 + 1/3 + 1/4 + ... + 1/2000 / 1999/1 + 1998/2 + 1997/3 +...+ 1999/1
Tính tổng :
1 + 2 + 3 + 4 .... + 1997 + 1998 + 1999 + 2000
1 + 2 + 3 + 4 .... + 1997 + 1998 + 1999 + 2000
= (2000+1) x 2000 : 2
= 2001 x 2000 : 2
= 4002000 : 2
= 2001000
co so so hang la
(2000-1)/1+1=2000so
tong la
(2000+1)*2000/2=2001000
tính nhanh : 1-2-3+4+5-6-7+...+1997-1998-1999+2000+2001
Ta có: 1-2-3+4+5-6-7+...+1997-1998-1999+2000+2001
=(1-2-3)+[4+(5-6-7)]+[8+(9-10-11)]+...+[1996+(1997-1998-1999)]+(2000+2001)
Từ 4 đến 1999 có số số hạng là: (1999-4):1+1=1996(số hạng)
= -4 + [4+(-8)] + [8+(-12)] + [12+(-16)] + ... + [1996+(-2000] + 4001
= -4 + (-4) + (-4) + (-4) + ... + (-4) + 4001
= -4 + (-4).(1996:4) + 4001
= -4 + (-4).499 + 4001
= -4.500 + 4001
= -2000 + 4001
= 2001
Nhớ k
tính D =1/2000*1999 -1/1999*1998-1/1998*1997-..-1/3*2-1/2*1
\(D=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{1998.1997}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(D=\dfrac{1}{1999.2000}-\left(\dfrac{1}{1998.1999}+\dfrac{1}{1997.1998}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)\(D=\dfrac{1}{1999.2000}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{1997.1998}+\dfrac{1}{1998.1999}+\dfrac{1}{1999.2000}\right)\)
\(D=\dfrac{1}{1999.2000}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{1997}-\dfrac{1}{1998}+\dfrac{1}{1998}-\dfrac{1}{1999}+\dfrac{1}{1999}-\dfrac{1}{2000}\right)\)\(D=\dfrac{1}{1999.2000}-\dfrac{1999}{2000}\)
S=1+2-3+4+.....+1997-1998+1999