Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhung mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 19:56

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{CBA}\) chung

Do đó; ΔAHB∼ΔCAB

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB\cdot AC=AH\cdot BC\)

b: BC=5cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)

Do đó: BD=15/7(cm); CD=20/7(cm)

Lê Nguyễn Phương Khanh
Xem chi tiết
Bùi Mạnh Tuấn
13 tháng 4 2016 lúc 21:03

Khong du dk cm

Nguyễn Trí Dũng
23 tháng 5 2021 lúc 22:00

Sao ý A nhiều ng bảo ko làm đc nhỉ??? 

Ta chỉ cần dùng tính chất bắc cầu là ra mà

Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
๒ạςђ ภђเêภ♕
30 tháng 3 2021 lúc 21:18

a) Tg AHC vuông tại H có :\(\widehat{HAC}+\widehat{C}=\widehat{AHC}=90^o\)

\(\widehat{HAC}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{HAB}=\widehat{C}\)

- Xét tg AHB và tg CHA có :

\(\widehat{AHB}=\widehat{AHC}=90^o\)

\(\widehat{HAB}=\widehat{C}\left(cmt\right)\)

\(\Rightarrow\Delta AHB~\Delta CHA\left(g.g\right)\)

(Dấu đồng dạng bị ngược, khi làm vào bài bạn quay ngược lại nha)

b) Xét tg BAH vuông tại H có :

AB2=BH2+AH2 (Pytago)

=>152=BH2+122

=>225=BH2+144

=>BH2=81

=>BH=9cm

- Do tg AHB đồng dạng tg CHA (cmt)

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)

\(\Rightarrow\frac{9}{12}=\frac{12}{HC}\)

\(\Rightarrow HC=16cm\)

- Có : HB+HC=BC

=> BC=9+16=25

- Xét tg ABC vuông tại A với định lí Pytago, ta tính được \(AC=20cm\)

#H

(Ý c,d để suy nghĩ tiếp)

Khách vãng lai đã xóa
Nguyễn Huy Tú
30 tháng 3 2021 lúc 21:22

A B C H 15 12 M

a, Xét tam giác AHB và tam giác CAB ta có : 

^AHB = ^A = 900

^B _ chung 

Vậy tam giác AHB  ~ tam giác CAB ( g.g ) (1)

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^A = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g ) (2) 

Từ (1) và (2) suy ra tam giác AHB ~ tam giác AHC 

b, Áp dụng định lí Py ta go cho tam giác AHB ta có : 

\(AB^2=AH^2+BH^2\Rightarrow BH^2=AB^2-AH^2\)

\(\Rightarrow BH^2=225-144=81\Rightarrow BH=9\)cm 

Ta có tam giác AHB ~ tam giác AHC ( cma ) 

\(\Rightarrow\frac{AH}{AH}=\frac{HB}{HC}\Rightarrow1=\frac{9}{HC}\Rightarrow HC=9\)cm 

Áp dụng Py ta go cho tam giác AHC ta có : 

\(AC^2=AH^2+HC^2\Rightarrow AC^2=144+81=225\Rightarrow AC=15\)cm 

c, Vì AM là tia phân giác ^BAC nên \(\frac{AB}{AC}=\frac{BM}{MC}\)

mà \(BM=BC-MC=18-MC\)

do \(BC=BH+HC=9+9=18\)cm

\(\Rightarrow\frac{AB}{AC}=\frac{18-MC}{MC}\Rightarrow18-MC=MC\Rightarrow MC=9\)cm 

\(\Rightarrow BM=BC-MC=18-9=9\)

( hoặc có thể làm thế này * AM là trung tuyến nên MC = BM = 18/2 = 9 cm )

\(\Rightarrow BM=BH+HM\Rightarrow HM=BM-BH\)

thay số vào, mà bài mình sai ở đâu rồi, xem lại hộ mình nhé, mệt quá, cách làm tương tự như vậy 

bì BH không bằng BM nhé do BH = 9 ; BM = 9 xem lại hộ mình nhé 

Khách vãng lai đã xóa
Chương Nguyễn
Xem chi tiết
Thaomy
Xem chi tiết
Luyện Thanh Mai
Xem chi tiết
Hồng Nhan
30 tháng 3 2021 lúc 17:21

A B C H D

Hồng Nhan
30 tháng 3 2021 lúc 17:25

a)

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

           \(\widehat{B}:chung\)

      \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)           \(\left(ĐPCM\right)\)

Hồng Nhan
30 tháng 3 2021 lúc 17:43

b)

Áp dụng định lý Py-ta-go cho tam giác vuông ABC. Ta có:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow15^2+20^2=BC^2\)

\(\Leftrightarrow BC=25\)

Ta có: \(\text{ΔABC ∼ ΔHBA }\)   (cm câu a)

\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}=\dfrac{AB}{BH}\)

⇔ \(\dfrac{AH}{AC}=\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

⇔ \(\dfrac{AH}{20}=\dfrac{15}{25}=\dfrac{BH}{15}\)

\(\Rightarrow\left\{{}\begin{matrix}AH=12\\BH=9\end{matrix}\right.\)

⇒ \(CH=BC-BH=25-9=16\)

Huyền Trân
Xem chi tiết
Huyền Trân
18 tháng 3 2021 lúc 14:03

Giúp mình với, mình cảm ơn!😢

Among us
18 tháng 3 2021 lúc 16:01

a, Xét tam giác HBA vuông tại H có:

AB2=AH2+BH2(định lí py ta go)

hay 100=AH2+36

=> AH2=64

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

d) Vì AB = AC; BD = CE

mà AB - BD = AD

AC - CE = AE

=> AD = AE

Vì ΔHDE cân

=> H ∈ đường trung trực cạnh DE (1)

Xét ΔADHvàΔAEHcó

AD = AE (cmt)

AH (chung)

DH = HE (cmt)

Do đó: ΔADH=ΔAEH(c−c−c)

=> AD = AE ( hai cạnh tương ứng)

=> ΔADE cân tại A

=> A ∈ đường trung trực cạnh DE (2)

(1); (2) => A,H ∈ đường trung trực cạnh DE

=>AH là đường trung trực cạnh DE

CHÚC BẠN HỌC TỐT

Kiều Hương Ly
Xem chi tiết
Ran Mori and Kudo Shinic...
6 tháng 5 2016 lúc 20:39

Chứng minh câu a)

Ta có:  AH vuông góc với BC ( giả thiết)

=> góc H = 1v

Xét tam giác AHC và tam giác BHA có:

góc AHC=AHB=90 độ

góc B=góc C=45 độ

=>2 tam giác đồng dạng

Câu b)

*BC=?

Ta có tam giác ABC vuông tại A( theo giả thiết0

Theo định lí pi ta go, ta có :

BC^2=AC^2+AB^2=400+225=625

=>BC=25

*AH=?

S tam giác ABC=1/2.AB.AC hoặc 1/2BC.AH

=>AB.AC=BC.AH =>AB/BC=AH/AC

=>AH=15.20/25=12

Câu c)mk ko piet giai nha sorry nha

Hà Thương
Xem chi tiết
Nguyễn Ngọc Anh Minh
1 tháng 5 2022 lúc 10:55

a/ Xét tg vuông BAC và tg vuông BHA có

\(\widehat{ACB}=\widehat{BAH}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg BAC đồng dạng với tg BHA (g.g.g)

b/ Xét tg vuông BAC có

\(BC=\sqrt{AB^2+AC^2}\) (Pitago) \(\Rightarrow BC=\sqrt{6^2+8^2}=10cm\)

\(AB^2=HB.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)

\(\Rightarrow HC=BC-HB=10-3,6=6,4cm\)

\(AH^2=HB.HC\) (Trong tg vuông bình phương đường cạo hạ từ đỉnh góc vuông bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH^2=3,6.6,4=23,04\Rightarrow AH=4,8cm\)

c/

Xét tg vuông HBM và tg vuông ABD có

\(\widehat{HBM}=\widehat{ABD}\left(gt\right)\) => tg HBM đồng dạng với tg ABD (g.g.g)

\(\Rightarrow\dfrac{HB}{AB}=\dfrac{HM}{AD}\Rightarrow\dfrac{AD}{AB}=\dfrac{HM}{HB}\) (1)

Xét tg vuông ABC có BD là phân giác \(\widehat{B}\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{CD}{BC}\) (T/c đường phân giác: Trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với hai cạnh kề hai đoạn thẳng đó) (2)

Xét tg ABH có BM là phân giác \(\widehat{B}\)

\(\Rightarrow\dfrac{HM}{HB}=\dfrac{AM}{AB}\) (T/c đường phân giác: Trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với hai cạnh kề hai đoạn thẳng đó) (3)

Từ (1) (2) (3) \(\Rightarrow\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{HM}{HB}=\dfrac{AM}{AB}\)

\(\Rightarrow\dfrac{AD}{AB}.\dfrac{AM}{AB}=\dfrac{CD}{BC}.\dfrac{HM}{HB}\)

 Mà \(HB.BC=AB^2\) (cmt)

\(\Rightarrow\dfrac{AD.AM}{AB^2}=\dfrac{HM.CD}{AB^2}\Rightarrow AM.AD=HM.CD\)

\(\Rightarrow AM.AD-HM.CD=0\)