giúp mình câu c
cho ΔABC vuông tại A có đg cao AH, có AD phân giác ∠BAC. Biết AB=3cm, AC=4cm
a) c/m: ΔAHB ∼ ΔCAB và AB.AC=AH.BC
b) tính độ dài BD, CD
c) gọi M trung điểm BH, N trung điểm AH. C/m: CN ⊥ AM
cho ΔABC vuông tại A có đg cao AH, có AD phân giác ∠BAC. Biết AB=3cm, AC=4cm
a) c/m: ΔAHB ∼ ΔCAB và AB.AC=AH.BC
b) tính độ dài BD, CD
c) gọi M trung điểm BH, N trung điểm AH. C/m: CN ⊥ AM
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{CBA}\) chung
Do đó; ΔAHB∼ΔCAB
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB\cdot AC=AH\cdot BC\)
b: BC=5cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)
Do đó: BD=15/7(cm); CD=20/7(cm)
Cho tam giác ABC vuông tại có đường cao AH
a) Chứng minh tam giác AHC đồng dạng với tam giác BHA
b) Cho AB= 15cm AC=20cm. Tính độ dài BC và AH
c) Gọi M là trung điểm của BH và N là trung điểm của AH. C/m CN vuông góc với AM
Sao ý A nhiều ng bảo ko làm đc nhỉ???
Ta chỉ cần dùng tính chất bắc cầu là ra mà
Cho tam giác ABC vuông tại A có AH là đường cao H thuộc BC. Biết AB=15cm, AH=12cm.
a, Chứng minh tg AHB đồng dạng tg CHA
b, Tính BH,HC,AC
c, Vẽ AM là tia phân giác góc BAC, M thuộc BC. Tính HM
d, Lấy E trên AC sao cho HE//AB. Gọi N là trung điểm AB. CN cắt HE tại I. CMR I là trung điểm HE
a) Tg AHC vuông tại H có :\(\widehat{HAC}+\widehat{C}=\widehat{AHC}=90^o\)
\(\widehat{HAC}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{HAB}=\widehat{C}\)
- Xét tg AHB và tg CHA có :
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(\widehat{HAB}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\Delta AHB~\Delta CHA\left(g.g\right)\)
(Dấu đồng dạng bị ngược, khi làm vào bài bạn quay ngược lại nha)
b) Xét tg BAH vuông tại H có :
AB2=BH2+AH2 (Pytago)
=>152=BH2+122
=>225=BH2+144
=>BH2=81
=>BH=9cm
- Do tg AHB đồng dạng tg CHA (cmt)
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)
\(\Rightarrow\frac{9}{12}=\frac{12}{HC}\)
\(\Rightarrow HC=16cm\)
- Có : HB+HC=BC
=> BC=9+16=25
- Xét tg ABC vuông tại A với định lí Pytago, ta tính được \(AC=20cm\)
#H
(Ý c,d để suy nghĩ tiếp)
a, Xét tam giác AHB và tam giác CAB ta có :
^AHB = ^A = 900
^B _ chung
Vậy tam giác AHB ~ tam giác CAB ( g.g ) (1)
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^A = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g ) (2)
Từ (1) và (2) suy ra tam giác AHB ~ tam giác AHC
b, Áp dụng định lí Py ta go cho tam giác AHB ta có :
\(AB^2=AH^2+BH^2\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=225-144=81\Rightarrow BH=9\)cm
Ta có tam giác AHB ~ tam giác AHC ( cma )
\(\Rightarrow\frac{AH}{AH}=\frac{HB}{HC}\Rightarrow1=\frac{9}{HC}\Rightarrow HC=9\)cm
Áp dụng Py ta go cho tam giác AHC ta có :
\(AC^2=AH^2+HC^2\Rightarrow AC^2=144+81=225\Rightarrow AC=15\)cm
c, Vì AM là tia phân giác ^BAC nên \(\frac{AB}{AC}=\frac{BM}{MC}\)
mà \(BM=BC-MC=18-MC\)
do \(BC=BH+HC=9+9=18\)cm
\(\Rightarrow\frac{AB}{AC}=\frac{18-MC}{MC}\Rightarrow18-MC=MC\Rightarrow MC=9\)cm
\(\Rightarrow BM=BC-MC=18-9=9\)
( hoặc có thể làm thế này * AM là trung tuyến nên MC = BM = 18/2 = 9 cm )
\(\Rightarrow BM=BH+HM\Rightarrow HM=BM-BH\)
thay số vào, mà bài mình sai ở đâu rồi, xem lại hộ mình nhé, mệt quá, cách làm tương tự như vậy
bì BH không bằng BM nhé do BH = 9 ; BM = 9 xem lại hộ mình nhé
Cho tam giác ABC vuông tại A, đường cao AH, H thuộc BC. AB=3cm, AC=4cm.
a/ C/m tam giác AHC đồng dạng với tam giác BHA
b/ Tính tỉ số diện tích của hai tam giác AHC và tam giác BHA
c/ Gọi M là trung điểm của BH và N là trung điểm của AH. C/m CN vuông góc với AM
Cho tam giác ABC cân tại A. Có góc A <90°, vẽ AH vuông góc với BC tại H
a) chứng minh ΔAHB=ΔAHC
b) biết AH=4cm, BH=3cm. Tính độ dài AB
c) qua H vẽ đường thẳng song song với AC cắt AB ở M. Gọi G là giao điểm của CM và AM. Chứng minh G là trọng tâm của ΔABC. tính độ dài AG
d) chứng minh CG<CA+CB/3
Cho tam giác ABC vuông tại A , AB = 15 cm ,AC = 20 cm . Kẻ đường cao AH ( H ϵ BC )
a) C/m ΔABC đồng dạng ΔHBA
b) Tính độ dài BC , AH ,BH ,CH
c) Vẽ đường phân giác AD của góc BAC . Tính BD , DC
a)
Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat{B}:chung\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\) \(\left(ĐPCM\right)\)
b)
Áp dụng định lý Py-ta-go cho tam giác vuông ABC. Ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow15^2+20^2=BC^2\)
\(\Leftrightarrow BC=25\)
Ta có: \(\text{ΔABC ∼ ΔHBA }\) (cm câu a)
\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}=\dfrac{AB}{BH}\)
⇔ \(\dfrac{AH}{AC}=\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
⇔ \(\dfrac{AH}{20}=\dfrac{15}{25}=\dfrac{BH}{15}\)
\(\Rightarrow\left\{{}\begin{matrix}AH=12\\BH=9\end{matrix}\right.\)
⇒ \(CH=BC-BH=25-9=16\)
Cho tam giác ABC cân tại A có đường cao AH. Biết AB= 10cm,BH= 6cm. a) tính độ dài cạnh AH, AC, CH b) chứng minh HB=HC c) gọi M là trung điểm của AC; N là trung điểm của AD. Chứng minh NM//BC
a, Xét tam giác HBA vuông tại H có:
AB2=AH2+BH2(định lí py ta go)
hay 100=AH2+36
=> AH2=64
=> AH=8(cm)
b, Xét tam giác ABH và tam giác ACH có:
góc AHB=góc AHC =90 độ
AB=AC (tam giác ABC cân tại A)
AH chung
=> tam giác ABH = tam giác ACH
c,
Xét tam giác DBH và tam giác ECH có:
BD=CE (gt)
góc DBH= góc ECH (tam giác ABC Cân tại A)
BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)
=> tam giác DBH=tam giác ECH
=> DH=EH( 2 cạnh tương ứng)
=> tam giác HDE cân tại H
d) Vì AB = AC; BD = CE
mà AB - BD = AD
AC - CE = AE
=> AD = AE
Vì ΔHDE cân
=> H ∈ đường trung trực cạnh DE (1)
Xét ΔADHvàΔAEHcó
AD = AE (cmt)
AH (chung)
DH = HE (cmt)
Do đó: ΔADH=ΔAEH(c−c−c)
=> AD = AE ( hai cạnh tương ứng)
=> ΔADE cân tại A
=> A ∈ đường trung trực cạnh DE (2)
(1); (2) => A,H ∈ đường trung trực cạnh DE
=>AH là đường trung trực cạnh DE
CHÚC BẠN HỌC TỐT
Cho tam giác ABC vuông tại A đường cao AH
a. Chứng minh tam giác AHC đồng dạng tam giác BHA
b, Cho AB=15cm, AC=20cm. Tính độ dài BC, AH
c, Gọi M là trung điểm của BH, N là trung điểm của AH. Chứng minh: CN vuông góc AM
Chứng minh câu a)
Ta có: AH vuông góc với BC ( giả thiết)
=> góc H = 1v
Xét tam giác AHC và tam giác BHA có:
góc AHC=AHB=90 độ
góc B=góc C=45 độ
=>2 tam giác đồng dạng
Câu b)
*BC=?
Ta có tam giác ABC vuông tại A( theo giả thiết0
Theo định lí pi ta go, ta có :
BC^2=AC^2+AB^2=400+225=625
=>BC=25
*AH=?
S tam giác ABC=1/2.AB.AC hoặc 1/2BC.AH
=>AB.AC=BC.AH =>AB/BC=AH/AC
=>AH=15.20/25=12
Câu c)mk ko piet giai nha sorry nha
cho tam giác ABC vuông tại A, đường cao AH, phân giác BD. gọi M là giao điểm của AH và BD.
a, chứng minh hai tam giác BAC và BHA đồng dạng
b, biết AB=6cm, AC=8cm. tính độ dài các đoạn thẳng BC, AH, HB, HC
c, chứng minh AM.AD-HM.CD=0 ( giúp mình nhanh với nha mai mình phải nộp rồi)
a/ Xét tg vuông BAC và tg vuông BHA có
\(\widehat{ACB}=\widehat{BAH}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg BAC đồng dạng với tg BHA (g.g.g)
b/ Xét tg vuông BAC có
\(BC=\sqrt{AB^2+AC^2}\) (Pitago) \(\Rightarrow BC=\sqrt{6^2+8^2}=10cm\)
\(AB^2=HB.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)
\(\Rightarrow HC=BC-HB=10-3,6=6,4cm\)
\(AH^2=HB.HC\) (Trong tg vuông bình phương đường cạo hạ từ đỉnh góc vuông bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH^2=3,6.6,4=23,04\Rightarrow AH=4,8cm\)
c/
Xét tg vuông HBM và tg vuông ABD có
\(\widehat{HBM}=\widehat{ABD}\left(gt\right)\) => tg HBM đồng dạng với tg ABD (g.g.g)
\(\Rightarrow\dfrac{HB}{AB}=\dfrac{HM}{AD}\Rightarrow\dfrac{AD}{AB}=\dfrac{HM}{HB}\) (1)
Xét tg vuông ABC có BD là phân giác \(\widehat{B}\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{CD}{BC}\) (T/c đường phân giác: Trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với hai cạnh kề hai đoạn thẳng đó) (2)
Xét tg ABH có BM là phân giác \(\widehat{B}\)
\(\Rightarrow\dfrac{HM}{HB}=\dfrac{AM}{AB}\) (T/c đường phân giác: Trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với hai cạnh kề hai đoạn thẳng đó) (3)
Từ (1) (2) (3) \(\Rightarrow\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{HM}{HB}=\dfrac{AM}{AB}\)
\(\Rightarrow\dfrac{AD}{AB}.\dfrac{AM}{AB}=\dfrac{CD}{BC}.\dfrac{HM}{HB}\)
Mà \(HB.BC=AB^2\) (cmt)
\(\Rightarrow\dfrac{AD.AM}{AB^2}=\dfrac{HM.CD}{AB^2}\Rightarrow AM.AD=HM.CD\)
\(\Rightarrow AM.AD-HM.CD=0\)