Cho tam giiacs cân ABC có AB \(=\)12 cm và BC \(=\)6 cm tính cạnh còn lại
Cho tam giác ABC có BC = 13 cm, CA = 12 cm, AB = 5 cm. Biết tam giác ABC đồng dạng với tam giác MNP có cạnh nhỏ nhất là 2,5 cm. Tính độ dài các cạnh còn lại của tam giác MNP.
ΔABC đồng dạng với ΔMNP
=>\(\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}\)
ΔABC đồng dạng với ΔMNP
=>Độ dài cạnh nhỏ nhất của ΔMNP sẽ là độ dài tương ứng với cạnh nhỏ nhất của ΔABC
mà cạnh nhỏ nhất của ΔABC là AB và cạnh tương ứng của AB trong ΔMNP là MN
nên MN=2,5cm
=>\(\dfrac{5}{2,5}=\dfrac{12}{MP}=\dfrac{13}{NP}\)
=>\(\dfrac{12}{MP}=\dfrac{13}{NP}=2\)
=>MP=12/2=6(cm); NP=13/2=6,5(cm)
Cho tam giác ABC cân tại A có AB = 10 cm và BC = 6 cm, D là trung điểm của đoạn thẳng BC. Tính độ dài cạnh AD.
ABC cân A nên AD cũng là đường cao
\(BD=\dfrac{1}{2}BC=3\left(cm\right)\)
Áp dụng PTG: \(AD=\sqrt{AB^2-BD^2}=\sqrt{91}\left(cm\right)\)
Câu 1:Tính độ dài cạnh AB của tam giác ABC vuông tại A có hai đường trung tuyến AM và BN lần lượt bằng 6 cm và 9 cm.
Câu 2: Cho hình thang cân ABCD, đáy lớn CD=10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính độ dài đường cao của hình thang cân đó.
Câu 3: Cho tam giác ABC cân tại A, đường cao ứng với cạnh đáy có độ dài 15,6 cm, đường cao ứng với cạnh bên dài 12 cm. Tính độ dài cạnh đáy BC.
Câu 4: Cho tam giác ABC vuông tại A, AB<AC; gọi I là giao điểm các đường phân giác, M là trung điểm BC . Cho biết góc BIM bằng 90°. Tính BC:AC:AB.
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
5. cho tam giác ABC và tam giác A'B'C' đồng dạng theo tỉ số k = 2/7. Biết rằng tổng chu vi của hai tam giác bằng 180 cm. Tính chu vi của mỗi tam giác.
6.tam giác ABC có AB = 3 cm BC = 5 cm CA = 7 cm. tam giác DEF đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5 cm. Tính các cạnh còn lại của tam giác A'B'C'.
6.)
Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.
Theo đề:\(A'B'\)=4,5
Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)
Bác Tư có một khu đất hình tam giác vuông ABC vuông góc ở A cắt các cạnh AB bằng 30 cm, AC bằng 40 cm và BC = 50 cm Bác ngăn ra một mảnh hình thang có đáy lớn là cạnh BC của khu đất và chiều cao 12 m. Tính diện tích khu đất còn lại ?
không cần vẽ hình:
S(ABC)= 40 x30=600 (m2)
Chiều cao tương ứng xuống cạnh BC là: 600 x2: 50=24 (m)
Gọi MN là đáy bé của hình thang MNCB ta có:
- Nối BN
S(BNC) = 50 x12:2= 300 (m2)
S(NBA)= 600-300= 300 (m2)
Chiều cao hạ từ AN là:
300 ×2: 30= 20 (m)
Tương tự nối CM ta có: S(CBM)= 300 (m2)
S(CAM) =300(m2)
AM= 300×2: 40=15 (m)
S(AMN)= 20 ×15 :2=150 (m2)
S(MNCB)= 600-150=450 (m2)
MN = 450 x2 :12= 75 (m)
Bác Tư có một khu đất hình tam giác vuông ABC vuông góc ở A cắt các cạnh AB bằng 30 cm, AC bằng 40 cm và BC = 50 cm Bác ngăn ra một mảnh hình thang có đáy lớn là cạnh BC của khu đất và chiều cao 12 m. Tính diện tích khu đất còn lại ?
không cần vẽ hình: S(ABC)= 40 x30=600 ( m 2 ) Chiều cao tương ứng xuống cạnh BC là: 600 x2: 50=24 (m) Gọi MN là đáy bé của hình thang MNCB ta có: - Nối BN S(BNC) = 50 x12:2= 300 ( m 2 ) S(NBA)= 600-300= 300 ( m 2 ) Chiều cao hạ từ AN là: 300 ×2: 30= 20 (m) Tương tự nối CM ta có: S(CBM)= 300 ( m 2 ) S(CAM) =300( m 2 ) AM= 300×2: 40=15 (m) S(AMN)= 20 ×15 :2=150 ( m 2 ) S(MNCB)= 600-150=450 ( m 2 ) MN = 450 x2 :12= 75 (m)
4. a)Tính cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng a.
b) Tính cạnh của một tam giác đều có đường cao bằng h.
5. Cho tam giác nhọn ABC, đường cao AH = 12 cm, AB = 13 cm, HC = 16 cm. Tính các độ dài AC, BC.
4:
a: Gọi độ dài cạnh góc vuông cần tìm là x
Theo đề, ta có: x^2+x^2=a^2
=>2x^2=a^2
=>x^2=a^2/2=2a^2/4
=>\(x=\dfrac{a\sqrt{2}}{2}\)
b:
Độ dài cạnh là;
\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)
5:
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>13^2=12^2+HB^2
=>HB=5cm
BC=5+16=21cm
ΔAHC vuông tại H
=>AH^2+HC^2=AC^2
=>AC^2=16^2+12^2=400
=>AC=20(cm)
1. Tính diện tích của một hình thang cân biết hai đáy là 12 cm và 18 cm Góc ở đáy là 75 Độ
2. Tính diện tích của một hình bình hành có hai cạnh là 12 cm và 15 cm góc tạo bởi 2 cạnh ấy là 110 độ
3. Cho tam giác ABC góc A bằng 75 Độ AB bằng 30 cm BC = 35 cm Tính AC và dịch tiếp tam giác abc
Câu 4(3,0 điểm) Cho tam giác ABC vuông tại A.
a) Cho AB = 9 cm; AC = 12 cm. Tính cạnh BC và các góc còn lại của tam giác ABC
( Làm tròn đến độ)
b) Gọi H là hình chiếu của A trên BC; E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AH = EF và AE.AB = AF.AC
c) Gọi K là trung điểm của BC, biết AK cắt EF tại I. Chứng tỏ rằng AK vuông góc với EF.
Câu 5 Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB = 3 cm, AC = 4 cm. Tính độ dài các đoạn BC, HB, HC, AH;
2) kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
Chứng minh
3)Chứng minh: