Chứng minh rằng với mọi số tự nhiên n, phân số sau là tối giản : n+3 / n+2
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
Chứng minh rằng với mọi số tự nhiên n khác 0 thì các phân số sau là phân số tối giản n+1/n
Gọi d=ƯCLN(n+1;n)
=>\(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)
=>\(n+1-n⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(n+1;n)=1
=>\(\dfrac{n+1}{n}\) là phân số tối giản
chứng minh rằng phân số sau tối giản với mọi số tự nhiên n
\(\dfrac{3n+2}{5n+3}\)
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 5(3n + 2) chia hết cho d = (15n + 10) chia hết cho d
<=> 3(5n +3) chia hết cho d = (15n + 9) chia hết cho d
=> (15n + 10) - (15n + 9) chia hết cho d = 1 chia hết cho d
=> d = 1
=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
Vậy Phân số là phân số tối giản.
tự làm nha thấy đúng cho mik một like
chứng tỏ rằng với mọi số tự nhiên n phân số sau đây là tối giản n+1/3.n+2
gọi d là ƯC(n+1; 3n+2)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow3n+3-3n-2⋮d\)
\(\Rightarrow\left(3n-3n\right)+\left(3-2\right)⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản
Gọi d = ƯCLN ( n + 1 ; 3n + 2 )
Ta có : n + 1 chia hết cho d => 3( n + 1 ) chia hết cho d
3n + 2 chia hết cho d
=> ( 3n + 3 - 3n - 2 ) chia hết cho d => 1 chia hết cho d
=> d thuộc { 1 ; - 1 }
=> n + 1 ; 3n + 2 là hai số nguyên tố cùng nhau
=> phân số \(\frac{n+1}{3n+2}\) là phân số tối giản
Gọi d là ƯCLN(n + 1, 3n + 2), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,3n+2\right)=1\)
\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản.
Chứng minh rằng phân số sau là phân số tối giản với mọi số tự nhiên n: \(\frac{n}{30+2}\)
Chứng minh rằng phân số sau là phân số tối giản vs mọi số tự nhiên n: 12x n+1/ 30x n+2
Chứng minh rằng với mọi số tự nhiên n, phân số 12n+1/2n(n+2) là phân số tối giản
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
Chứng minh rằng với mọi số tự nhiên n, phân số 12n+1/2n(n+2) là phân số tối giản.
Mọi người ai trả lời giúp mình với ! @_@
Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
Quách Dương Hà Anh mình ch bt là bạn giải đúng hay sai nhưng nếu giải thích là số lẻ/ số chẵn là phân số tối giản thì sai nhé.
VD: 3/12 = 1/4.
Phải giải thích là 23 là số nguyên tố => 23 chỉ chia hết cho chính nó và 1.
Mà 23 và 1 là số lẻ, còn 2n(n+2) là số chẵn nên 23 không chia hết cho 2n(n+2) =>....