Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Quang Huy
Xem chi tiết
Lê Phúc Thuận
Xem chi tiết
Hiếu
15 tháng 2 2018 lúc 19:48

Từ đề ra : \(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)

=> Chuyển vế và nhóm lại ta đc : \(a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\) (1)

Tương tự ta có : \(a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\)(2)

Trừ 2 cho 1 : \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\) ( bạn phân tích là đc như vậy )

Vì các số hạng trên đều \(\ge0\) 

Nên : biểu thức bằng = khi các số hạng = 0 

Bạn cho các  số hạng =0 rồi tính ra đc : 

\(\orbr{\begin{cases}a=0\\a=1\end{cases}}\) và \(\orbr{\begin{cases}b=0\\b=1\end{cases}}\)

Vì a,b dương nên \(\hept{\begin{cases}a=1\\b=1\end{cases}}\)

=> \(a^{2011}+b^{2011}=1+1=2\)

Hoàng Phúc
Xem chi tiết
ngonhuminh
25 tháng 12 2016 lúc 16:57

\(a^{2000}+b^{2000}=a.a^{2000}+b.b^{2000}=a^2.a^{2000}+b^2.b^{2000}\)

a=b={0,1} là nghiệm 

xét a,b \(\ne\left\{0,1\right\}\)

\(\left(1-a\right).a^{2000}=\left(b-1\right).b^{2000}\Leftrightarrow\frac{1-a}{b-1}=\left(\frac{b}{a}\right)^{2000}\)(1)

\(\left(1-a^2\right).a^{2000}=\left(b^2-1\right).b^{2000}\Rightarrow\frac{1-a^2}{b^2-1}=\left(\frac{b}{a}\right)^{2000}\)(2)

(1)&(2)=>\(\frac{1-a}{b-1}=\frac{1-a^2}{b^2-1}\Rightarrow\left(1-a\right)\left(b+1\right)=\left(1-a\right)\left(1+a\right)\Rightarrow a=b\)

Thay vào phương trình đầu: => a=b={0,1) a, b dương => a=b=1

a^20011+b^20011=2

Cold Wind
25 tháng 12 2016 lúc 16:31

\(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)

\(\Leftrightarrow a^{2000}+b^{2000}=a\cdot a^{2000}+b\cdot b^{2000}=a^2\cdot a^{2000}+b^2\cdot b^{2000}\)

Mà a,b >0 

\(\Rightarrow\hept{\begin{cases}a=a^2=1\\b=b^2=1\end{cases}\Rightarrow a=b=1}\)

Vậy \(a^{2011}+b^{2011}=1+1=2\)

True or False??!?

Hoàng Phúc
25 tháng 12 2016 lúc 16:34

chưa chặt chẽ

Nguyễn Thu Hà
Xem chi tiết
kudo shinichi
6 tháng 2 2019 lúc 15:31

Ta có: \(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)

\(\Rightarrow\hept{\begin{cases}a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\\a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\end{cases}}\)

\(\Leftrightarrow a^{2000}\left(a-1\right)\left(a-1\right)+b^{2000}\left(b-1\right)\left(b-1\right)=0\)

\(\Leftrightarrow a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)

Ta có: \(\hept{\begin{cases}a^{2000}\left(a-1\right)^2\ge0\forall a>0\\b^{2000}\left(b-1\right)^2\ge0\forall b>0\end{cases}}\)\(\Leftrightarrow a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2\ge0\)

Mà \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a^{2000}\left(a-1\right)^2=0\\b^{2000}\left(b-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-1=0\left(a>0\right)\\b-1=0\left(b>0\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

\(M=a^{2017}+b^{2017}=1+1=2\)

Vậy \(M=2\)

FK
6 tháng 2 2019 lúc 17:40

không biết cách này đúng không nữa 

\(a^{2000}+b^{2000}=a^{2001}+b^{2001}\Rightarrow a^{2001}+b^{2001}-a^{2000}-b^{2000}=0\)

\(\Rightarrow a^{2000}.\left(a-1\right)+b^{2000}.\left(b-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)(1)

\(a^{2002}+b^{2002}=a^{2001}+b^{2001}\Rightarrow a^{2002}+b^{2002}-a^{2001}-b^{2001}=0\)

\(\Rightarrow a^{2001}.\left(a-1\right)+b^{2001}.\left(b-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\left(\text{vì a,b dương nên }a^{2001}\text{và }b^{2001}\text{ lớn hơn 0}\right)\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)(2)

từ (1) và (2) => a=b=1=> M=2

p/s: trình độ thấp, sai bỏ qua

Le vi dai
Xem chi tiết
GoKu Đại Chiến Super Man
26 tháng 1 2016 lúc 11:25

bạn ấn vào đúng 0 sẽ ra đáp án mình giải 

Không quan tâm
26 tháng 1 2016 lúc 11:28

a2001+b2001 =2

Nguyễn Thu Trang
26 tháng 1 2016 lúc 11:28

bạn Phạm Ngọc Thạch lúc nào cũng nói thế để lừa dối mọi người thế

do minh phuong
Xem chi tiết
Cần 1 cái tên
25 tháng 1 2017 lúc 20:26

a2011 + b2011 = 1 + 1 = 2

Trần Thuý Hiền
25 tháng 1 2017 lúc 20:43

đơn giản bạn ơi, 

cặp a,b có hai trường hơp :

a                             0         0          1          1

b                             0          1           0        1

a^2011 + b ^2011       0           1         1       2

Hoàng Phúc
25 tháng 1 2017 lúc 20:47

xét a2002+b2002=a2002+a2001b+ab2001+b2002-a2001b-ab2001

=(a2001+b2001)(a+b)-ab(a2000+b2000)=(a2002+b2002)(a+b)-ab(a2002+b2002)=(a2002+b2002)(a+b-ab)

=>(a2002+b2002)/(a2002+b2002)=(a2002+b2002)(a+b-ab)/(a2002+b2002)

=>a+b-ab=1

=>a+b-ab-1=0=>a-ab-1+b=0=>a(1-b)-(1-b)=0=>(a-1)(1-b)=0

+)a=1 =>b=0;b=1

+)b=1=>a=0;a=1

Vậy (a;b)=(0;1);(1;0);(1;1)

Thay vào đc ...=2

Lê Nhật Mai
Xem chi tiết
nguyen van hai
18 tháng 2 2016 lúc 22:18

phần a nhé

1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a)            do a+b+c=1

áp dụng bdt cosi cho các  so dương a/b,b/a,a/c,c/a,b/c,c/b

a/b+b/a >=2

b/c+c/b>=2

a/c+c/a>=2

cộng hết vào suy ra 1/a+1/b+1/c >=9       

Nguyễn Thị Sao Mai
Xem chi tiết
Ad Dragon Boy
22 tháng 4 2017 lúc 12:43

\(a=1;b=0\)

\(\Rightarrow a^{2015}+b^{2015}=1+0=1\)

Đúng 100%

Đúng 100%

Đúng 100%

Ngọc Lưu
22 tháng 4 2017 lúc 13:22

già sử \(a=1,b=1\)

thì \(1^{2000}+1^{2000}=1^{2001}+1^{2001}=1^{2002}+1^{2002}=1+1=2\)

Ngọc Lưu
22 tháng 4 2017 lúc 13:25

Vậy \(a^{2015}+b^{2015}=1+1=2\)

Le vi dai
Xem chi tiết
o0o Cô Bé Lạnh Lùng o0o
26 tháng 1 2016 lúc 13:38

em hoc lop 5