Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pé Lùn
Xem chi tiết
Nguyễn Lê Thuỳ Linh (Bạn...
Xem chi tiết
Trần Ái Linh
1 tháng 2 2021 lúc 23:00

\(2x+3y=7 \\ \Leftrightarrow x=\dfrac{-7-3y}{2} \)

PT có nghiệm nguyên \(\Leftrightarrow -7-3y \vdots 2 \\ \Leftrightarrow (-7-3y \in Ư(2) \\ \Leftrightarrow -7-3y \in {-2;2;-1;1} \\ \Leftrightarrow y \in {\dfrac{-5}{3} (L) ; -3(TM); -2(TM) ; \dfrac{-8}{3} (L)} \)

- Với \(y=-3\) có: \(x=1\).

- Với \(y=-2\) có: \(x=\dfrac{-1}{2} (L)\)

Vậy \((x;y)=(-3;1)\) là nghiệm nguyên duy nhất của phương trình.

Nguyễn Xuân Dũng
Xem chi tiết
I - Vy Nguyễn
4 tháng 3 2020 lúc 12:37

Biểu diễn y theo x :

\(\left(2x+3\right)y=5x+11\)

Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:

            \(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)

Để \(y\)  \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)

           \(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)

           \(\implies\)   \(2x+10\)   chia hết cho  \(2x+3\) 

           \(\implies\)   \(2x+3+7\) chia hết cho \(2x+3\) 

           \(\implies\)  \(7\) chia hết cho \(2x+3\)

           \(\implies\)  \(2x+3\) \(\in\)   \(Ư\)(\(7\))={ \(1;-1;7;-7\) }

Ta có bảng sau:

\(2x+3\)\(1\)\(-1\)\(7\)\(-7\)
\(x\)\(-1\)\(-2\)\(2\)\(-5\)
\(y\)\(6\)\(-1\)\(3\)\(2\)

Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }

Khách vãng lai đã xóa
Phạm Đức Trí
Xem chi tiết
do linh
22 tháng 4 2018 lúc 21:41

\(pt\Leftrightarrow x\left(y-2\right)=-3y-1\)

\(\Leftrightarrow x=\frac{-3y-1}{y-2}=\frac{\left(-3y+6\right)-7}{y-2}=-3-\frac{7}{y-2}\)

Để \(x\inℤ\)thì \(\frac{7}{y-2}\inℤ\)

\(\Leftrightarrow y-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

lần lượt thay các giá trị của y-2 ta tìm dc các cặp nghiệm (x;y) là:

(-2; -5); (4; 1); (-10; 3); (-4; 9)

Minh Nguyệt
Xem chi tiết
Buddy
16 tháng 2 2021 lúc 21:49

2x - 3y = 1.

=> y = 2/3x - 1/3

=> Nghiệm tổng quát của phương trình 2x - 3y = 1 là đường thẳng y = 2/3x - 1/3

lê viết sang
Xem chi tiết
Nguyễn Minh Nghĩa
24 tháng 9 2021 lúc 21:38

Ta có: \(2x+3y=11\Leftrightarrow x=\frac{11-3y}{2}=5-y+\frac{1-y}{2}\).

Vì \(x\) và \(y\) nguyên nên \(\frac{1-y}{2}\) nguyên. Đặt \(\frac{1-y}{2}=t\left(t\inℤ\right)\)

\(\Rightarrow y=1-2t\)

\(\Rightarrow x=5-\left(1-2t\right)+\frac{1-\left(1-2t\right)}{2}=5-1+2t+t=3t+4\).

Vậy nghiệm của phương trình trên là: \(\hept{\begin{cases}x=3t+4\\y=-2t+1\end{cases}}\left(t\inℤ\right)\).

Khách vãng lai đã xóa
Nguyễn Đình Nam
Xem chi tiết
Đan Linh
Xem chi tiết
chuche
10 tháng 4 2022 lúc 20:26

tham khảo:

 <=> 2x^2+3y^2+4x -19 =0

<=> 2.(x2 + 2x +1) + 3.y2 = 21

<=> 2.(x+1)2 + 3. y2 = 21

Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 ≤≤≤ 21 và (x+1)2 là số chính phương

=> (x+1)2 =0 hoặc  9 

+) x + 1 = 0 => x = -1 => y 2 = 7 => loại

+) (x+1)= 9 => y= 1

=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4

y2 = 1 => y = 1 hoặc y = -1

Vậy....

loancute
Xem chi tiết