Cho tam giác ABC vuông tại A, điểm H nằm giữa A và C. So sánh BH và BC. E cần gấp ạ
Cho tam giác ABC vuông tại A, điểm H nằm giữa A và C. So sánh BH và BC.
Cho tam giác ABC vuông cân tại A, kẻ AM vuông góc BC (M thuộc BC).a)cm : tam giác ABM bằng tam giác ACM.b) gọi e là một điểm nằm giữa M và C. Kẻ BH ,CK vuông góc với AE (H và K thuộc đường thẳng AE) .cm: BH = AK c)cm: tam giác mhk cân . Mik cần gấp ! Giúp mik vs ạ ❤️🥺
Câu 1: Cho △ABC có góc B = 50 độ.
a, So sánh các cạnh của △ABC
b, Kẻ AH vuông góc với BC tại H. So sánh độ dài cạnh HB và HC
Câu 2: Cho tam giác ABC nhọn, điểm D nằm giữa B và C sao cho AD không vuông góc với BC. Kẻ BH và CK vuông góc với đường thẳng AD tại H và K
a, So sánh BH + CK và AB + AC
b, So sánh BH + CK và BC
Nếu△ABC vuông tại B và D là trung điểm BC thì so sánh AH + Ak với 2. AB
a: BH<AB
CK<AC
=>BH+CK<AB+AC
b: BH<BD
CK<CD
=>BH+CD<BD+CD=BC
Cho tam giác ABC vuông cân tại A, M là trung điểm của cạnh BC,E là điểm nằm giữa M và C. Vẽ BH vuông góc với AE tại H, CK vuông góc với AE tại K. CMR: a. BH = AK
b. tam giác HBM = tam giác KAM
c. tam giác MHK vuông cân
a, BH = AK:
Ta có: ΔABC vuông cân tại A.
=> A1ˆ=A2ˆ=90oA1^=A2^=90o (1)
Cũng có: BH ⊥ AE.
=> ΔBAH vuông tại H.
=> B1ˆ+A2ˆ=90oB1^+A2^=90o (2)
Từ (1) và (2) => A1ˆ=B1ˆA1^=B1^.
Xét ΔBAH và ΔACK có:
+ AB = AC (ΔABC cân)
+ H1ˆ=K1ˆ=90oH1^=K1^=90o (CK ⊥ AE, BH ⊥ AE)
+ A1ˆ=B1ˆ=(cmt)A1^=B1^=(cmt)
=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)
=> BH = AK (2 cạnh tương ứng)
b, ΔMBH = ΔMAK:
Ta có: BH ⊥ AK; CK ⊥ AE.
=> BH // CK.
=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]
Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]
Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]
AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]
Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]
Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.
Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.
Xét ΔMBH và ΔMAK có:
+ MA = MB (cmt)
+ HBMˆ=MAKˆHBM^=MAK^ (cmt)
+ BH = AK (câu a)
=> ΔMBH = ΔMAK (c - g - c)
c, ΔMHK vuông cân:
Xét ΔAMH và ΔCMK có:
+ AH = CK (ΔABH = ΔCAK)
+ MH = MK (ΔMBH = ΔMAK)
+ AM = CM (AM là trung tuyến)
=> ΔAMH = ΔCMK (c - c - c)
=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)
mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o
=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o
hay HMKˆ=90oHMK^=90o.
ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.
=> ΔHMK vuông cân tại M.
chúc bạn học tốt
Cho tam giác ABC vuông cân tại A. M là trung điểm của cạnh BC. Điểm E nằm Giữa M và C. Vẽ BH vuông góc với AE tại H, CK vuông góc với AE tại K. CMR:
a) BH = AE
b) Tam giác HBM = tam giác KAM
c) tam giác MHK vuông cân
Cho tam giác ABC vuông cân tại A. M là trung điểm cạnh BC. Điểm E nằm giữa M và C. Vẽ BH vuông AE tại H, CK vuông AE tại K.CM:
a) BH=AK
b) tam giác HBM= tam giác KAM
c) Tam giác MHK vuông cân
1,cho tam giác abc vuông tại a, e là một điểm nằm giữa a và c.
a, so sánh góc bec và góc a
b, chứng minh be < bc
giúp mik với ạ
a) \(\Delta ABE\)vuông tại A \(\Rightarrow\widehat{AEB}< 90^o\)\(\Rightarrow\widehat{BEC}>90^o\)( tổng 2 góc kề bù )
mà \(\widehat{A}=90^o\)\(\Rightarrow\widehat{BEC}>\widehat{A}\)
b) Vì \(\widehat{BEC}>90^o\)\(\Rightarrow BE< BC\)( cạnh đối diện của góc tù trong1 tam giác )
\(\Rightarrowđpcm\)
Cho tam giác ABC nhọn, điểm D nằm giữa B và C sao cho AD không vuông góc với BC. Gọi H và K là chân đường vuông góc kẻ từ B và C đến đường thẳng AD:
a) So sánh BH+CK và AB+AC.
b) So sánh BH+CK và BC
Cho tam giác ABC vuông cân tại A, M là trung điểm của cạnh BC,E là điểm nằm giữa M và C. Vẽ BH vuông góc với AE tại H, CK vuông góc với AE tại K. CMR BH=A