tìm tỉ số x/y biết x,y thỏa mãn
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
Tìm tỉ số \(\frac{x}{y}\)biết x, y thỏa mãn \(\frac{2x-y}{x+y}=\frac{2}{3}\)
Ta có:\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Tìm tỉ số \(\frac{x}{y}\), biết x,y thỏa mãn:
\(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
Ta có: \(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
=> (2x - y).3 = (x+y) .2
6x - 3y = 2x + 2y
6x - 2x = 3y + 2y
4x = 5y
=> \(\frac{x}{5}\)=\(\frac{y}{4}\)
Vậy tỉ số \(\frac{x}{y}\)=\(\frac{5}{4}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2y+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy \(\frac{x}{y}=\frac{5}{4}\)
Theo bài ra ta có: \(\frac{2x-y}{x+y}=\frac{2}{3}\)
=> 3(2x-y)=2(x+y)
=> 6x-3y=2x+2y
=> 6x-2x=2y+3y
=> 4x=5y
=> \(\frac{x}{y}=\frac{5}{4}\)
Vậy \(\frac{x}{y}=\frac{5}{4}\)
\(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
Tìm tỉ số \(\frac{x}{y}\), biết x, y thỏa mãn:
Ta có : \(\frac{2x-y}{x+y}=\frac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\Leftrightarrow6x-3y=2x+2y\Leftrightarrow4x=5y\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)
Vì \(\frac{2x-y}{x+y}=\frac{2}{3}=>\left(2x-y\right).3=\left(x+y\right).2=>6x-3y=2x+2y\)
\(=>6x-2x=2y-\left(-3y\right)=>6x-2x=2y+3y=>4x=5y=>\frac{x}{y}=\frac{5}{4}\)
Vậy tỉ số x/y=5/4
tìm tỉ số \(\frac{x}{y}\) biết x,y thỏa mãn \(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=3y+2y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
\(\Rightarrow\frac{2x+2y-3y}{x+y}=\frac{2}{3}\)
\(\Rightarrow\frac{2\left(x+y\right)-3y}{x+y}=\frac{2}{3}\)
\(\Rightarrow2-\frac{3y}{x+y}=\frac{2}{3}\)
\(\Rightarrow\frac{3y}{x+y}=2-\frac{2}{3}\)
\(\Rightarrow\frac{3y}{x+y}=\frac{4}{3}\)
\(\Rightarrow3y.3=\left(x+y\right).4\)
\(\Rightarrow9y=4x+4y\)
\(\Rightarrow5y=4x\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
tìm tỉ số \(\frac{x}{y}\)biết x,y thỏa mãn :
A)\(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
b) \(\frac{x}{y}\)= \(\frac{2}{5}\)và x+y = 70
Tìm tỷ số \(\frac{x}{y}\)biết x,y thỏa mãn: \(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2x+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
tìm tỉ số x/y,biết x,y thỏa mãn:2x-y/x+y=2/3
Cho x, y thỏa mãn: \(\frac{2x-3y}{x+2y}=\frac{2}{3}\). Tìm tỉ số \(\frac{y}{x}\)
\(\frac{2x-3y}{x+2y}=\frac{2}{3}=>\left(2x-3y\right).3=\left(x+2y\right).2=>6x-9y=2x+4y=>6x-2x=9y+4y\)
=>4x=13y
hay \(\frac{x}{y}=\frac{13}{4}\)
vậy gtri của tỉ số x/y là 13/4
tìm tỉ số x/y , biết x,y thỏa mãn :
2x-y/ x+y = 2/3