B=1/3.5+1/5.7+1/7.9+....+1/21.23+1/23.25
A=2/1.3-2/3.5-2/5.7-...-2/19.21-2/21.23-2/23.25-1/27
A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)
A=\(\dfrac{227}{675}\)
Tính: A = 4/5.7 + 4/7.9 + 4/9.11 + ... + 4/21.23 + 4/23.25
`A=4/[5.7]+4/[7.9]+4/[9.11]+...+4/[21.23]+4/[23.25]`
`A=2.(2/[5.7]+2/[7.9]+....+2/[23.25])`
`A=2.(1/5-1/7+1/7-1/9+....+1/23-1/25)`
`A=2.(1/5-1/25)`
`A=2. 4/25`
`A=8/25`
các bạn cho mk hỏi câu này
2/3.5+2/5.7+2/7.9+...+2/97.99
thì mk sẽ viết thành
1/3.5+1/5.7+1/7.9+...+1/97.99
hay
2.(1/3.5+1/5.7+1/7.9+...+1/97.99)
giúp mk với
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99
1.Tính hợp lí
a/ 2/3.5 + 2/5.7 + 2/7.9 +...+2/97.99
b/ 1/3.5 + 1/5.7 + 1/7.9 +...+1/97.99
c/1/18 + 1/54 + 1/108 +...+1/990
2.Chứng minh rằng: 1/14 + 1/42 + 1/43 +...+1/79 + 1/80 > 7.12
Tính nhanh tổng sau:
A=1/3+1/6+1/10+1/15+1/21+1/28
B=1/5.7+1/7.9+1/9.11+....+1/23.25
Tình B= 1.3/3.5+2.4/5.7+3.5/7.9+....+(n-1)(n+1)/(2n-1)/2n+1 plzzzz
tính B=1/3.5+1/5.7+1/7.9+...+1/37.39
B=1/3.5+1/5.7+1/7.9+...+1/37.39
=1/2(2/3.5+2/5.7+2/7.9+...+2/37.39)
=1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39)
=1/2(1/3-1/39)
=1/2(13/39-1/39)
=1/2.4/13
=2/13
1/3.5+1/5.7+1/7.9+....+1/37.39
=1/2.(1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39)
=1/2.(1/3-1/39)
=1/2.4/13
2/13
**** bạn
(a+1/1.3)+(a+1/3.5)+(a+1/5.7)+...+(a+1/23.25)=11.a+(1/3+1/9+1/27+1/81+1/243)
(a+\(\dfrac{1}{1.3}\))+(a+\(\dfrac{1}{3.5}\))+(a+\(\dfrac{1}{5.7}\))+..+(a+\(\dfrac{1}{23.25}\))=11.a+(\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))
(a+a+..+a)+(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)) = 11.a+ \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))
Đặt A =(a+a+..+a) + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)
Xét dãy số 1; 3; 5;...;25 Dãy số trên là dãy số cách đều với khoảng cách là: 3-1 = 2
Dãy số trên có số số hạng là: (25 - 1): 2 + 1 = 13
Vậy A = a\(\times\)13 + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)
A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\)(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{23.25}\))
A = a \(\times\) 13 + \(\dfrac{1}{2}\times\)( \(\dfrac{1}{1}-\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)- \(\dfrac{1}{7}\)+...+\(\dfrac{1}{23}\) - \(\dfrac{1}{25}\))
A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\) \(\dfrac{24}{25}\)
A = a\(\times\)13 + \(\dfrac{12}{25}\) (1)
Đặt B = \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\)+ \(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)
B\(\times\)3 =1 + \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)
B\(\times\)3 - B = 1 - \(\dfrac{1}{243}\) = \(\dfrac{242}{243}\)
2B = \(\dfrac{242}{243}\)
B = \(\dfrac{242}{243}\): 2
B = \(\dfrac{121}{243}\)
11a + B = 11a + \(\dfrac{121}{243}\) (2)
Từ (1) và(2) ta có:
a\(\times\)13 + \(\dfrac{12}{25}\) = 11\(\times\) a + \(\dfrac{121}{143}\)
a \(\times\) 13 + \(\dfrac{12}{25}\) - 11 \(\times\)a = \(\dfrac{121}{143}\)
\(a\times\)(13 - 11) + \(\dfrac{12}{25}\) = \(\dfrac{121}{143}\)
a \(\times\) 2 + \(\dfrac{12}{25}\) = \(\dfrac{121}{243}\)
a \(\times\) 2 = \(\dfrac{121}{243}\) - \(\dfrac{12}{25}\)
a \(\times\) 2 = \(\dfrac{109}{6075}\)
a = \(\dfrac{109}{6075}\): 2
a = \(\dfrac{109}{12150}\)