Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Lê Anh Thư
Xem chi tiết
Cô Nàng Song Tử
17 tháng 3 2017 lúc 21:50

A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)

A=\(\dfrac{227}{675}\)

ahihi
Xem chi tiết
Dora
28 tháng 1 2023 lúc 16:15

`A=4/[5.7]+4/[7.9]+4/[9.11]+...+4/[21.23]+4/[23.25]`

`A=2.(2/[5.7]+2/[7.9]+....+2/[23.25])`

`A=2.(1/5-1/7+1/7-1/9+....+1/23-1/25)`

`A=2.(1/5-1/25)`

`A=2. 4/25`

`A=8/25`

I LOVE YOU
Xem chi tiết
Lê Thảo
Xem chi tiết
Nguyễn Vũ Minh Hiếu
11 tháng 5 2019 lúc 19:25

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

~ Hok tốt ~

\(\)

Hoàng Ái Phương
11 tháng 5 2019 lúc 19:33

Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99

khang minh
20 tháng 9 2021 lúc 15:08

Tui hk bít nữa

Khách vãng lai đã xóa
Jetsuku Kayato
Xem chi tiết
My Hà MTP
Xem chi tiết
Duy Nguyen Le Khanh
Xem chi tiết
Đặng vân anh
Xem chi tiết
Minh Triều
15 tháng 6 2015 lúc 20:32

B=1/3.5+1/5.7+1/7.9+...+1/37.39 

=1/2(2/3.5+2/5.7+2/7.9+...+2/37.39)

=1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39)

=1/2(1/3-1/39)

=1/2(13/39-1/39)

=1/2.4/13

=2/13

robert lewandoski
15 tháng 6 2015 lúc 20:30

1/3.5+1/5.7+1/7.9+....+1/37.39

=1/2.(1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39)

=1/2.(1/3-1/39)

=1/2.4/13

2/13

**** bạn

 

PhạmLê Hồng Ân
Xem chi tiết

(a+\(\dfrac{1}{1.3}\))+(a+\(\dfrac{1}{3.5}\))+(a+\(\dfrac{1}{5.7}\))+..+(a+\(\dfrac{1}{23.25}\))=11.a+(\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))

(a+a+..+a)+(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)) = 11.a+ \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))

Đặt A =(a+a+..+a) + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)

Xét dãy số 1; 3; 5;...;25 Dãy số trên là dãy số cách đều với khoảng cách là: 3-1 = 2

Dãy số trên có số số hạng là: (25 - 1): 2 + 1  = 13

Vậy A = a\(\times\)13 + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)

A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\)(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{23.25}\))

A = a \(\times\) 13 + \(\dfrac{1}{2}\times\)\(\dfrac{1}{1}-\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)\(\dfrac{1}{7}\)+...+\(\dfrac{1}{23}\) - \(\dfrac{1}{25}\))

A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\) \(\dfrac{24}{25}\)

A = a\(\times\)13 + \(\dfrac{12}{25}\) (1)

Đặt B =    \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\)\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)

B\(\times\)3 =1 + \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)

B\(\times\)3 - B = 1 - \(\dfrac{1}{243}\) = \(\dfrac{242}{243}\)

2B = \(\dfrac{242}{243}\)

B = \(\dfrac{242}{243}\): 2

B = \(\dfrac{121}{243}\)

11a + B = 11a + \(\dfrac{121}{243}\) (2)

Từ (1) và(2) ta có:

a\(\times\)13  + \(\dfrac{12}{25}\) = 11\(\times\) a + \(\dfrac{121}{143}\)

\(\times\) 13 + \(\dfrac{12}{25}\) - 11 \(\times\)a = \(\dfrac{121}{143}\) 

\(a\times\)(13 - 11) + \(\dfrac{12}{25}\) = \(\dfrac{121}{143}\)

\(\times\) 2 + \(\dfrac{12}{25}\) = \(\dfrac{121}{243}\)

\(\times\) 2 = \(\dfrac{121}{243}\) - \(\dfrac{12}{25}\)

\(\times\) 2 = \(\dfrac{109}{6075}\)

a = \(\dfrac{109}{6075}\): 2

a = \(\dfrac{109}{12150}\)