Tim x biet: x+\(2\sqrt{2x^2}\) +2x3=0
tim x biet \(5\sqrt{x}-3+2x=0\)
tim x biet \(x-2\sqrt{x}=0\)
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy x=0 hoặc x=4 là giá trị cần tìm
\(x-2\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={0;4}
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Rightarrow}}\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
tim x biet
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Bài này chỉ yêu cầu tìm x thôi đúng ko bạn .
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\y-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow x=\sqrt{2}}\)
Tim x biet
a)\(\left(2\sqrt{x}-3\right).\left(2+\sqrt{x}\right)+6=0\)
b)\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a) \(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)
\(\Leftrightarrow2x+\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}+1=0\left(loại\right)\end{array}\right.\)\(\Leftrightarrow x=0\)
b)\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(ĐK:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\left(tm\right)\\x=6\left(tm\right)\end{array}\right.\)
tim x biet
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}\)+Ix+y+zI=0
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(x-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x+y=-z\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x=-z-y\end{cases}}\)
tim x biet (2x+1)+(2x+2)+...+(2x+2015)=0
Có 2015 số hạng
Tổng là (2x+1+2x+2015).2015:2=0
4x+2016=0
4x=-2016
x=-504
Ủng hộ mk nha
( 2x + 1 ) + ( 2x + 2 ) + ... + ( 2x + 2015 ) = 0
=> ( 2x + 2x + .. + 2x ) + ( 1 + 2 + ... + 2015 ) = 0
2015 số 2x
=> 2x . 2015 + 2031120 = 0
=> 2x . 2015 = 0 - 2031120
=> 2x . 2015 = - 2031120
=> 2x = ( - 2031120 ) : 2015
=> 2x = - 1008
=> x = ( - 1008 ) : 2
=> x = - 504
=> ( 2x + 2x + .... + 2x + 2x ) + ( 1 + 2 + 3 + .... + 2015 ) = 0
=> ( 2x.2015 ) + { [ 2015.( 2015 + 1 ] : 2 } = 0
=> 4030x + [ ( 2015 . 2016 ) : 2 ] = 0
=> 4030x + ( 4062240 : 2 ) = 0
=> 4030x + 2031120 = 0
=> 4030x = - 2031120
=> x = - 2031120 : 4030 = - 504
Vậy x = - 504
tim x biet (2x+1)+(2x+2)+...+(2x+2015)=0
Có tất cả số 2x là:
(2015-1):1+1=2015(số)
Ta có:(2x+1)+(2x+2)+............+(2x+2015)=0
=>2015*2x+(1+2+3+............+2015)=0
=>4030x+2031120=0
=>4030x=-2031120
=>x=-504
A= x-2 2+ sqrt x (x>=0); ==( 8x sqrt x -1 2x- sqrt x - 8x sqrt x +1 2x+ sqrt x )= 2x+1 2x-1 vdi x>0,x ne 1 2 ;x ne- 1 2 MS05. Cho A =- a. Rút gọn B. b. Tim x d hat e A B =1
tim x,biet:
(2x-6).(x-2)=0
(2x-6).(x-2) = 0
=>2x - 6 = 0 hoặc x - 2 = 0
2x - 6 = 0
2x = 6
x = 3
x - 2 = 0
x = 2
Vậy x thuộc {2;3}