cho tam giác ABC, AD là đường phân giác. Chứng minh rằng : S tam giác ABD/ S tam giác ACD = AB/AC
Cho tam giác ABC vuông tại A, có AB=6cm; AC = 8cm; BC=10cm. Đường cao AH (H thuộc BC)
a) Chỉ ra các cặp tam giác đồng dạng
b) Cho AD là tia phân giác của tam giác ABC (D thuộc BC). Tính độ dài DB và DC
c) Chứng minh rằng AB^2 = BH*HC
d) Vẽ đường thẳng vuông góc với AC tại C cắt đường phân giác AD tại E. Chứng minh tam giác ABD đồng dạng tam giác ECD.
b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7
a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC
=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)
b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm
c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm
Tam giác ABC có độ dài các cạnh AB = m, AC = n và AD là đường phân giác. Chứng minh rằng tỉ số diện tích của tam giác ABD và diện tích của tam giác ACD bằng m/n.
Kẻ AH là đường cao của tam giác ABC
Ta có:
Vậy tỉ số diện tích của tam giác ABD và tam giác ACD bằng m/n.
Cho tam giác ABC có AB=AC. Tia phân giác goác BAC cắt BC tại D. Chứng minh:
a, Tam giác ABD= tam giác ACD
b, AD là đường trung trực của BC
cho tam giác ABC có AB=AC , e là trung điểm của cạnh AB,AD là tia phân giác của góc BAC(D thuộcCB) Trên tia đối của tia EC lấy điểm F sao cho EF=EC
a)Chứng minh rằng tam giác BÈ=AEC từ đó => BF//AC
b ) CMR tam giác ACD=ABD
C) đường thẳng FB cắt tia AD ở K . Chứng minh tam giác FAK là tam giác Vuông
Cho tam giác ABC có dộ dài các cạnh AB=m, AC=n (AB<AC); AD là đường phân giác trong góc A, AM là đường trung tuyến. Đặt S là diện tích tam giác ABC
a)tính tỉ số diện tích của tam giác ABD và tam giác ACD theo m và n
b) Tính diện tích tam giác ADM theo m,n và S
a/ Theo tính chất đường phân giác trong tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy ta có
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{m}{n}\)
Hai tam giác ABD và tam giác ACD có chung đường cao hạ từ A xuống BC nên
\(\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{BD}{CD}=\frac{m}{n}\)
b/ Ta có
\(\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{m}{n}\Rightarrow\frac{S_{\Delta ABD}}{m}=\frac{S_{\Delta ACD}}{n}=\frac{S_{\Delta ABD}+S_{\Delta ACD}}{m+n}=\frac{S_{\Delta ABC}}{m+n}=\frac{s}{m+n}\)
\(\Rightarrow S_{\Delta ABD}=\frac{sm}{m+n}\)
Xét hai tam giác ABM và tam giác ABC có chung đường cao hạ từ A xuống BC nên
\(\frac{S_{\Delta ABM}}{S_{\Delta ABC}}=\frac{BD}{BC}=\frac{1}{2}\Rightarrow S_{\Delta ABM}=\frac{S_{\Delta ABC}}{2}=\frac{s}{2}\)
Mà \(S_{\Delta ADM}=S_{\Delta ABM}-S_{\Delta ABD}=\frac{s}{2}-\frac{sm}{m+n}\)
bạn ơi tại sao \(\frac{BD}{BC}=\frac{1}{2}\) vậy bạn?
Cho tam giác ABC vuông tại A, có AB=6cm;
AC=8cm, BC=10cm. Đường cao AH (H thuộc BC);
a) Chỉ ra các cặp tam giác đồng dạng
b) Cho AD là đường phân giác của tam giác ABC (D thuộc BC). Tính độ dài DB và DC
c) Chứng minh rằng AB^2 = BH * HC
d) Vẽ đường thẳng vuông góc với AC tại C cắt đường phân giác AD tại E. Chứng minh tam giác ABD đồng dạng tam giác ECD.
cho tam giác abc cân tại a . qua b kẻ đường thẳng vuônng góc ab , qua c kẻ đường thẳng vuông góc ac , chúng cắt nhau tại d . a, chứng minh tam giác abd bằng tam giác acd . b, chứng minh ad là tia phân giác của góc a , da là tia phân giác của góc d . c, chứng minh tam giác bdc cân . d, chứng minh ad là trung trực của bc . CÁC BẠN VẼ HÌNH VÀ GIẢI HỘ MÌNH VỚI Ạ , MÌNH CẢM ƠN .
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó; ΔABD=ΔACD
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Cho tam giác ABC cân tại A(góc A< 90"), đường phân giác AD(D thuộc BC). Kẻ đường cao BE, gọi H là giao điểm của BE và AD. a. Chứng minh: tam giác ABD=tam giác ACD; b. Chứng minh: AB+BH > AC +CD; c. Gọi K là chân đường vuông góc kẻ từ C đến AB. Chứng minh: Ba đường thẳng AD, BE,CK đồng quy.
a: Xét ΔABD và ΔACD có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔABD=ΔACD
c: ΔABC cân tại A
mà AD là phân giác
nen AD vuông góc BC
Xét ΔABC có
AD,BE,CK là các đường cao
=>AD,BE,CK đồng quy
Cho tam giác ABC có AB = AC. Gọi D là trung điểm cạnh BC qua A vẽ đường thẳng d song song với BC. Chứng minh rằng:
a) tam giác ABD = tam giác ACD
b) AD là tia phân giác của góc BAC
c) AD vuông góc với đường thẳng d
a) Xét \(\Delta\)ABD và \(\Delta\)ACD có:
AB = AC (gt)
AD: cạnh chung
BD = CD (D là trung điểm của BC)
\(\Rightarrow\Delta\)ABD = \(\Delta\)ACD (c.c.c)
b) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)
\(\Rightarrow\widehat{BAD}\) = \(\widehat{CAD}\) (2 góc tương ứng)
\(\Rightarrow\) AD là tia phân giác của \(\widehat{BAC}\)
c) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)
\(\Rightarrow\widehat{ADB}\) =\(\widehat{ADC}\) (2 góc tương ứng)
mà \(\widehat{ADB}\) + \(\widehat{ADC}\) = 18001800 (2 góc kề bù)
\(\Rightarrow\widehat{ADB}\) = \(\widehat{ADC}\) = 900900
\(\Rightarrow\) AD \(\perp\) BC
Lại có: d // BC (gt) \(\Rightarrow\) AD \(\perp\) d
ĐS:......................
#Châu's ngốc