Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huyền Trang
Xem chi tiết
Huy trần
Xem chi tiết
NGUYỄN NGỌC LAN
3 tháng 12 2014 lúc 7:00

2011có chữ số tận cùng là 1 => 2011n là số lẻ

2013n có tận cùng là 9 ; 7 ; 1 ;3 => 2013n là số lẻ

2012có tận cùng chẵn            => 2012n là số chẵn

do đó tổng 3 số đã cho sẽ là : lẻ + lẻ + chẵn = chẵn ( luân chia hết cho 2 với mọi n thuộc N*) => ĐPCM

Vũ Phương Trinh
22 tháng 12 2017 lúc 21:06

ĐPCM là gì vậy nhỉ?

Ngô Trần Phương Anh
22 tháng 12 2017 lúc 21:08
DPCM là điều phải chứng minh nhé
Hoàng Thị Linh Chi
Xem chi tiết
Lê Song Thanh Nhã
16 tháng 7 2015 lúc 20:38

Ta có 3 trường hợp:

+ n chia hết cho 3

+ n chia 3 dư 1

+ n chia 3 dư 2

~ Với trường hợp n chia hết cho 3, ta có:

n^2 chia hết cho 3

n chia hết cho 3

2012 không chia hết cho 3

=> n^2 + n +2012 không chia hết cho 3 (1)

~ Với trường hợp n chia 3 dư 1, ta có:

n^2 chia 3 dư 1

n chia 3 dư 1

2012 chia 3 dư 2

=> n^2+n+2012 không chia hết cho 3 (2)

~ Với trường hợp n chia 3 dư 2, ta có:

n^2 chia 3 dư 1

n chia 3 dư 2

2012 chia 3 dư 2

=>  n^2+n+2012 không chia hết cho 3 (3)

Từ (1); (2); (3) ta đc điều cần chứng minh

 

Hoàng Thị Linh Chi
Xem chi tiết
Hoàng Thị Linh Chi
Xem chi tiết
Hoàng Thị Linh Chi
Xem chi tiết
Đỗ Lê Tú Linh
16 tháng 7 2015 lúc 20:36

Nếu n=3k(k thuộc Z)

thì BT trên=(3k)2+3k+2012=(3k)(3k+1)+2012 ko chia hết cho 3

Nếu n=3k+1(k thuộc Z)

thì BT trên=(3k+1)2+(3k+1)+2012=(3k+1)(3k+2)+2012 ko chia hết cho 3

Nếu n=3k+2(k thuộc Z)

thì BT trên=(3k+2)2+(3k+2)+(3*670+2)=(3k+2)(3k+3)+2010+2 không chia hết cho 3

Vậy với mọi n nguyên thì n2+n+2012 ko chia hết cho 3

Kirigaya Kazuto
Xem chi tiết
Yuuki Asuna
19 tháng 11 2016 lúc 15:40

Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)

\(A=2n+\left(...6\right)+\left(...1\right)\)

Ta có : 2n là số chẵn

\(2012^{2013}\) là số chẵn

\(2013^{2012}\) là số lẻ

\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ

Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ

=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )

Nguyễn Huỳnh Như
Xem chi tiết
Uchiha Nguyễn
10 tháng 12 2015 lúc 9:04

2011n luôn lẻ

2012n luôn chẵn

2013n luôn lẻ

=> 2011n + 2012n + 2013n luôn chẵn

=> Chia hết cho 2

=> ĐPCM 

Bùi Văn Phúc
Xem chi tiết
Nguyễn Văn Hải
14 tháng 3 2022 lúc 20:47

vì n+2012 và n+2013 là 2 số tự nhiên liên tiếp

mà 2 số tự nhiên liên tiếp nhân với nhau có tận cùng là chữ số chắn

=> chia hết cho 2

Khách vãng lai đã xóa